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Abstract:

Experiment and Results
Observing System Simulation Experiments (OSSEs)
The experiment will follow the OSSEs [3] process, which is a standard 

procedure for testing the data assimilation systems. We will solve the Lorenz 

63 model and use it as the ground truth. Next, we will perturb it with Gaussian 

noise to simulate observation data which is shown in Figure 3. Due to space 

limitations, only the data of 𝑥 will be presented.

We will split the noisy observation data into 3600 (90%) training data, and 

400 (10%) testing data. We trained the LSTM model (using the setting in 

Table 1) only with the noisy training data. We then used the LSTMEnKF to 

filter the testing data and use the analysis state to make a forecast. As shown 

in Figure 4, using the analysis data as initial state, the LSTMEnKF provides 

better long-term predictions.
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Traditional approach
Traditionally, to provide a numerical forecast using 

background knowledge and real-world observations, 

we follow these four steps:

Problem Description
What if the only information we trust

is tons of noisy observations?

The problems of traditional approach
If we attempt to provide a precise and long-term forecast for a 

chaotic and unfamiliar phenomenon using only observation data, 

we cannot simply follow the traditional approach. We will 

encounter the following challenges:

In Step 1, constructing a state-of-the-art physics-driven model 

for a complex phenomenon is challenging and often requires 

collaboration among multiple scientists and mathematicians.

In Step 2, model errors can make finding the right parameters 

tricky. This can lead to an underfitting model that lacks detail, 

some cases requiring additional measurements from real-

world experiments.

In Step 3, some models can be very difficult to solve, and the 

limitations of numerical solvers can sometimes be unrealistic, 

such as requiring boundary conditions. Additionally, 

computational cost and numerical errors can still be 

problematic.

In Step 4, data assimilation relies on the prediction model, and 
some systems require the additional predictor 𝐿 to estimate the 

ECM. If both 𝑃 and 𝐿 is not sufficiently accurate, the data 

assimilation process will be ineffective and may result in filter 

divergence.

The errors in each step will accumulate and become amplified 

when we need a long-term forecast.

Step 4: Give initial condition

We also require an initial condition to make a forecast. Chaotic systems 

like weather phenomena are highly sensitive to initial data [4], and 

therefore meteorologists use data assimilation to reduce observation 

errors. One example of data assimilation is the extended Kalman filter 

(EKF), shown in Figure 1, which combines the background (previous 

prediction) 𝑋𝑝 with the observation 𝑋𝑜 using the error covariance matrix 

(ECM) to find the analysis state 𝑋𝑎, which is believed to be more reliable 

and accurate. By using 𝑋𝑎 as the initial condition, the forecast will be 

improved. However, most data assimilation methods face problems such 

as the requirement for a tangent linear model 𝐿, which is a predictor for 

error, and the issue of filter divergence [2] etc.

NN 

Structure

Sequence Input Layer (3 unit)

LSTM Layer (30 unit)

LSTM Layer (30 unit)

Fully Connected Layer (3 unit)

Regression Layer

Epoch 60 Epoch

Train info. 18 sec. (CPU) with 3600 data

Optimizer
Adaptive Moment Estimation 

(Adam) 

Table 1. LSTM structure and training 

information, with noisy Lorenz 63 data.

Figure 1. The process of the extended Kalman filter, which can improve 

the accuracy of the initial data and lead to a better prediction.

Step 1: Build a mathematical model

The first step is to use physical laws to establish 

the governing equation with respect to time, such 

as the Lorenz 63 model [4]:
𝑑𝑥

𝑑𝑡
= 𝜎 𝑦 − 𝑥 , 

𝑑𝑦

𝑑𝑡
= 𝑥 𝜌 − 𝑧 − 𝑦, 

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧.

Step 2: Find the constant

Next, we must determine the constants in the 

system. For this experiment, we have set the 

parameters as 

𝜎 = 10, 𝜌 = 28, 𝛽 = 8/3.

Step 3: Find a model solver

We need to discretize and solve the prediction 

model. For an ordinary differential equation (ODE) 

system like Lorenz 63, we can use the fourth-order 

Runge-Kutta method (RK4).

For prediction steps ❶, we 

use the LSTM model as 

predictor 𝑃. For analysis 

steps ❸, unlike stochastic 

EnKF, which uses 

Gaussian random noise to 

perturb the observations, in 

Figure 2 (a), we use the 

normal inverse cumulative 

distribution function to 

ensure that the perturbed 

observations stay in a fixed 

and perfect distribution. 

Additionally, in Figure 2 

(b) the analysis pairing is 

based on the value. Both of 

these changes are made to 

avoid filter divergence.

LSTMEnKF
To avoid all the problems we have mentioned, 

we have set up a purely data-driven model 

using the long short-term memory (LSTM) 

neural network [1]. We have then developed a 

variant of the stochastic ensemble Kalman 

filter (EnKF) [2] as the data assimilation 

system. By taking advantage of ensemble 

forecasting, we can easily combine these two 

methods, and call it the LSTMEnKF method. 

To compare it with the traditional approach, 

we will follow these four steps:

Step 1: Build LSTM model

We present the LSTM neural network 

architecture in Table 1. 

Step 2: Trian the LSTM model

We train the unknown parameters in each 

layer of the neural network according to the 

settings provided in Table 1.

Methodology Step 3: LSTM don’t need a solver

As a prediction model, LSTM is an easily computable model that 

does not consume too many computer resources. 

Step 4: Use LSTMEnKF to build analysis data as initial

With ensemble forecasting, the EnKF uses the distribution of the 

ensemble members to estimate the background ECM. We have

𝐶 =
1

𝑚
𝑋𝑝 − 𝑋𝑝 𝑋𝑝 − 𝑋𝑝

𝑇
,

where 𝑚 is the number of members, 𝑋𝑝 is state and 𝑋𝑝 is mean

𝑋𝑝 =

𝑥1 𝑥2
𝑦1 𝑦2
𝑧1 𝑧2

… 𝑥𝑚
… 𝑦𝑚
… 𝑧𝑚

, 𝑋𝑝 =
ҧ𝑥 ҧ𝑥
ത𝑦 ത𝑦
ҧ𝑧 ҧ𝑧

… ҧ𝑥
… ത𝑦
… ҧ𝑧

.

Compared to EKF, EnKF does not require ❷ and ❹. we can avoid 

the building of tangent linear model 𝐿, and give more nonlinearity 

to the background ECM.

(a)

(b)

Figure 2. An example of 4 ensemble 

members, (a) is perturb disterbution, 

(b) is the pairing of analysis. Table 2. RMSE of observation data and 

LSTMEnKF analysis data. (train / test)

Another advantage is that the 

LSTMEnKF can also denoise the 

noisy observation data, as seen in 

Table 2 where it is effective in 

denoising both training and 

testing data.

𝑥 𝑦 𝑧

Obs. 3.07 / 3.12 2.98 / 2.90 3.01 / 3.07

Ana. 0.90 / 0.87 1.35 / 1.27 1.39 / 1.17

Figure 3. Simulated observation data and ground turth for Lorenz 63. 

Figure 4. Comparison of LSTM and LSTMEnKF

Conclusions:

Prediction problems, such as numerical weather prediction and computational fluid dynamics, often require rich physical laws and background knowledge to establish mathematical 

models. These physics-driven approaches have been developed over time and have become reliable. However, for some problems, such as space weather, which are more chaotic and involve 

unfamiliar phenomena, it can be challenging to build a functional mathematical model due to the lack of necessary knowledge. In such cases, observation data, which is often noisy, is the only 

available information. To avoid the problem of finding physical laws, we built a purely data-driven model using deep learning called long short-term memory (LSTM) [1]. Based on the neural 

network we trained, we developed an ensemble data assimilation system [2] to denoise the observations and improve the accuracy of the initial conditions. With these more precise initial conditions, 

we can provide more accurate predictions. The experiments in this study follow the observing system simulation experiments (OSSEs) [3] and are based on data generated by the Lorenz 63 model [4].

The LSTMEnKF is a successful approach that combines deep learning models and data assimilation to 

provide better predictions under noisy observations. The modular approach allows us to replace the neural network architecture or use 

it as a filter. However, the success of neural networks in this task does not necessarily mean that traditional mathematical models will 

be replaced. Traditional mathematical models have been developed over a long period of time and offer the advantage of describing 

chaotic phenomena and simulating them at different scales. This is one of the main reasons why we aim to establish a neural network 

that can compete with differential equations. However, the simple architecture of LSTM is more suitable for finding periodicity or 

over-smoothing the model to reduce loss. In the future, we hope to combine mathematical simulations, data assimilation, and deep

learning to obtain more accurate results from real-world data and experiments such as space weather forecast.
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