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Abstract
The purpose of this paper is to understand how “the infectious disease model of two influenza virus strains” spreads through the analysis of differential equations and numerical

simulations using Matlab. Therefore, we consider the cross-immunity between the two virus strains under different levels of competition and quarantine policy. We find the conditions of

stability and existence for equilibrium points. Calculate the basic reproduction number ℜ𝑖 of each virus strain respectively and define isolation reproduction number ℜ𝑞 of the overall

system. If ℜ𝑞 < 1, both virus strains will die out. Even if any ℜ𝑖 < 1 , subthreshold coexistence can still occur. Finally, through Hopf bifurcation theorem and numerical simulations, we

confirmed that the diseases will coexist with oscillation. From numerical results, we find that quarantine may destabilize the dynamics, strong (weak) equal cross-immunity leads to

periodic behavior (equilibria), and the dynamics turn periodic as the difference of two cross-immunity exceeds a critical value.

Problem description
Historically, there are many times global influenza pandemics which caused more than one hundred million

death. For example, 1918 Spanish flu pandemic (H1N1), 1968 Hong Kong flu pandemic (H3N2), 2009 swine

flu pandemic (H1N1). From the cases of influenza in U.S. since 2008 (fig.1), the case become much fewer

since covid-19 outbreak, and the epidemic peaks appear in winter, so the behavior of influenza transmission is

periodic. The protection against some diseases gained from a former infection of other diseases is called the

cross-immunity. For instance, it had been shown that H1N1 and H3N2 has cross-immunity. In [3], Jorge A.

Alfaro-Murillo and Sherry Towers consider an influenza model with multiple strains and antigenic drift. Using

time-dependent rate of disease transmission which is called seasonal forcing to simulate the seasonal behavior

of influenza.

Figure 1. Inflenza case in U.S. form 2008 to 2022 Figure 2. Flow chart of disease transmit

The cross-immunity is determined by the antigenic distance. They found that reduced magnitude of disease

outbreaks in tropical regions than in temperate regions and the relationship of the size or time annual major

peak of influenza and seasonal forcing. Since the behavior of influenza transmission is seasonality, [4] shows

that a periodic solution exists when the transmission rate is periodic in a single-strain model.
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Figure 3. ODE model of disease 

transmit 

In this study, we consider a disease model with quarantine and cross-immunity

which is as same as [5]. It has four equilibrium points which are disease-free

(𝐸0), strain 1 survives (𝐸1), strain 2 survives (𝐸2) and two strains coexist (𝐸3).

Our problems are the following：
a) The existence condition of each equilibrium point.

b) The stability condition of each equilibrium point.

c) The condition of the behavior of disease transmission becomes periodic.

d) How the behavior changes if we adjust the parameters.

Notation

𝛽𝑖 is the transmission coefficient for strain i. Λ is the rate at which individuals

are born into the population. 𝜇 is the nature mortality rate. 𝛼𝑖 is the rate at

which individuals leave quarantine. 𝛾𝑖 is the recovery rate from strain 𝑖. 𝛿𝑖 is

the rate of quarantine. 𝜎𝑖𝑗 is the cross-immunity against strain 𝑗 following an

infection with strain 𝑖. (𝑖, 𝑗 = 1,2)

Results and discussion 
To analyze the stability of equilibrium points, we compute the Jacobian matrices and the eigenvalues. The

following theorem summarizes the results for one equilibrium point 𝐸1, and there are similar results for 𝐸2.

Theorem Define 

𝑓 ℜ1 =
1

1 + 𝜎 ℜ1 − 1 1 +
𝛿2

𝜇 + 𝛾2
1 −

𝜇 𝜇 + 𝛼1
𝜇 + 𝛾1 𝜇 + 𝛼1 + 𝛼1𝛿1

, 𝛼𝑐 𝜇 =
𝛿1
ℜ1
∗ 1 −

1

ℜ1
∗ + 𝑂(𝜇

1
2)

then we have following properties:

(1) If ℜ2 < 𝑓(ℜ1) and 𝛼1 > 𝛼𝑐(𝜇), then 𝐸1 is locally asymptotically stable.

(2) If ℜ2 > 𝑓(ℜ1) and 𝛼1 < 𝛼𝑐(𝜇), then 𝐸1 is unstable.

(3) When ℜ2 < 𝑓(ℜ1), according to Hopf bifurcation theorem, the periodic solutions of period is 

𝑇 =
2𝜋

𝐼𝑚 𝜔2,3

≈
2𝜋

𝛾1 + 𝛿1 ℜ1
∗ − 1

Τ1 2
𝜇 Τ1 2

appears at 𝛼1 = 𝛼𝑐(𝜇) , where ℜ𝑖 =
𝛽𝑖

𝜇+𝛾𝑖+𝛿𝑖
, 𝑖 = 1, 2

Figure 4. The periodic behavior of disease transmit and its phase-plane plot. 

From the function 𝑓(ℜ1) in the theorem, we can define function 𝑔(ℜ2) in a similar way, and then we can plot

a bifurcation diagram (figure 5). In figure 5, the first quadrant of (ℜ1, ℜ2)-plane is divided into four regions.

In the region {(ℜ1, ℜ2)|0 < ℜ1, ℜ2 < 1}, two strains both die out (𝐸0). In the region I (II), the strain 1(strain 2)

survives (𝐸1(𝐸2)). In the region III, two strains would coexist. Then by using the bifurcation diagram and the

reproduction numbers ℜ1 and ℜ2, we can predict the dynamics of two strains system

Figure 5. The regions of stability. Figure 6. The subthreshold coexistence.

Figure 7. Adjusting the quarantine period (𝛼) Figure 8. Adjusting the cross-immunity (𝜎1 = 𝜎2)

From the numerical simulation (figure 4), we can find the behavior of disease transmission is periodic in some

conditions, and this periodic behavior is the same as influenza transmission. Then we use the numerical

simulation to observe how the dynamics change when adjusting parameters. The endemic peaks become higher as

the infective rate increases. During the process of adjusting the infective rate, we find that the subthreshold

coexistence (figure 6) occurs possibly when ℜ1 or ℜ2 is smaller than 1. Figure 7 shows that the epidemic peaks

become higher and the periodic behavior becomes irregular when the length of the quarantine period increases.

For the cross-immunity, we consider whether two cross-immunity are equal or not. First, in figure 8, the equal

cross-immunity case shows that strong cross-immunity destabilizes the system and weak cross-immunity may

lead the system to a stable equilibrium point. Second, in figure 9, if two cross-immunity is not equal, then the

behavior of disease transmission changes from becoming a stable equilibrium point to a periodic oscillation when

the difference of two cross-immunity is larger than some value. In other words, the dynamics turns periodic when

𝜎12 − 𝜎21 > 𝜀, for some 𝜀 ∈ ℝ+.

Figure 9. Adjusting the cross-immunity (𝜎1 ≠ 𝜎2)

Conclusions
By analyzing the Jacobian matrix, we find the condition of existence and stability for each equilibrium point. The oscillatory coexistence is established via Hopf bifurcation and confirmed by numerical simulations. When computing

the coexistence equilibria, we find that subthreshold coexistence may occur even if ℜ1< 1 or ℜ2 < 1. The quarantine policy seems effective, but the numerical result shows that this could destabilize flu dynamics and create

uncertainty. In recent years, much fewer cases of influenza due to the pandemic of covid-19, the policies like wearing masks and quarantine which are equivalent to adding quarantine to system may accumulate susceptible class and

potentially result in the future flu outbreak. When two diseases which have cross-immunity transmit in an area, they would compete with each other and it is helpful to control disease. For symmetric cross-immunity, then the

stronger cross-immunity is, the more stable dynamic is. The sufficiently different cross-immunity means strong competition and makes dynamics seasonally periodic. For the future tasks, we would extend the model to many aspects

of epidemiology modeling, such as seasonality in transmission rate, individual difference of infective rate, age-structure, and possibility of coinfection. Finally, we could research the influenza dynamics with this model since the

periodic oscillation in numerical simulation is similar to the influenza cases.
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