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The Material Point Method (MPM) suffers from suboptimal accuracy and convergence rates as well as pressure oscillation due to the under-integration of the weak form; the material point locations

with respect to the background mesh are suboptimal in performing numerical quadrature. We present an MPM framework that employs the reproducing kernel (RK) approximation to overcome pressure

oscillation due to the cell-crossing instability, as well as a variationally consistent (VC) integration technique to recover optimal accuracy and convergence rates.

Critical numerical issues:

❑ Linear shape functions (such as finite element) cause stress oscillation as material points cross cell boundaries

❑ The use of material point integration leads to poor accuracy and convergence properties

❑ Immature quadrature rule leads to the presence of zero-energy modes and pressure oscillation
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Weak form for a continuum body under purely mechanical loadingMaterial Point Method (MPM)

✓ Eulerian background grid mesh

✓ Lagrangian material points

Particle to grid Grid updating Grid to particle Grid resetting
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Reproducing Kernel (RK) Approximation
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Displacement field approximation:

𝛹𝐼 𝒙 = 𝑯𝑇 0 𝑴−1 𝒙 𝑯 𝒙 − 𝒙𝐼 𝜙𝑎 𝒙 − 𝒙𝐼

Cubic B-spline kernel 𝜙𝑎 𝒙 − 𝒙𝐼

✓ Satisfies arbitrary order of continuity

RK Convergence Comparison Alleviate Cell-Crossing 

Instability

Basis vector: 𝑯𝑇 𝒙 − 𝒙𝐼 = 1, 𝑥1 − 𝑥1𝐼 , 𝑥2 − 𝑥2𝐼 , 𝑥1 − 𝑥1𝐼
2, … , 𝑥2 − 𝑥2𝐼

𝑛

✓ Satisfies arbitrary order of completeness

Variationally Consistent Integration
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෡𝛹𝐼𝑛𝑖𝑑Ω 𝑅𝐼 𝒙 = ቐ
1 𝑖𝑓 𝑥 ∈ 𝑠𝑢𝑝𝑝 𝛹𝐼 𝒙

0 𝑖𝑓 𝑥 ∉ 𝑠𝑢𝑝𝑝 𝛹𝐼 𝒙

Project the integration constraint error into the test function gradient field: ෡𝛹𝐼,𝑖 = 𝛹𝐼,𝑖 𝒙 + 𝑅𝐼 𝒙 𝜉𝑖𝐼

Optimal accuracy and convergence rates

✓ Recovers optimal convergence

Application to Large Deformation Problems
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Bullet penetration damage field

Cell-crossing instabilityPressure instability

Smoothed pressure field

✓ Smooths pressure oscillation

Elastoplastic soil collapse

We present a Material Point Method (MPM) formulation that employs the reproducing kernel approximation to alleviate the cell-crossing instability, as well as a variationally consistent integration

technique to recover optimal accuracy and convergence properties. Various numerical examples benchmark the presented MPM framework, and its application into large deformation problems involving

plastic deformation as well as fracture is currently under investigation.

The variationally consistent MPM formulation recovers linear Galerkin exactness

MPM spatial discretization
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