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Abstract
Fragmentation problems in solid mechanics is challenging for conventional mesh-based formulations such as the finite element method (FEM). To address this issue, a phase-field material point method (PF-

MPM) is presented. The phase field method regularizes the strongly discontinuous crack geometry into a diffusive damage representation, providing discretization independence. The material point method can

effectively bypass mesh distortion and entanglement. A dynamic hyperbolic phase-field equation is proposed for explicit time integration. Numerical examples are provided to benchmark the performance.

Dynamic Crack Branching, Initiation and Fragmentation Problems using PF-MPM

Conclusion
In this study, we have presented a phase-field material point method for modeling fracture and fragmentation problems. Phase field formulation for fracture mechanics exhibits mesh independency and accurate

crack propagation. By adding a second-order time derivative term in the PF-MPM, the system is converted into a hyperbolic equation that is suitable for explicit time integration, significantly reducing

computational cost. In the numerical testing, PF-MPM have shown promising feature in solving fragmentation problems, that was challenging for traditional mesh-based methods like FEM. We also

demonstrated the effectiveness of the dynamic phase-field formulation in simulating complex fracture behavior such as crack initiation and branching.
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• Fracture energy approximation at the crack surface:

• Total potential energy of the solid (𝛹):

• Undamaged tensile strain energy: • History field variable:

Sharp and diffusive interface

Diffusive crack topology

• Coupled equations for displacement and phase-field variable:

• CFL condition for Hyperbolic PDE allows relaxed timestep selection.

CFL Conditions:

• Hyperbolic phase-field evolution PDE can be given as [4]:

• Galerkin form of momentum balance and phase field evolution equations reads as [3]:

• The phase-field method [1] models a sharp crack into diffusive crack (damage) represented by the 

phase-field (scalar) variable 𝜙 ∈ 0,1 :

For Hyperbolic PDE: 𝑐Δ𝑡 ≤ Δ𝑥 For Parabolic PDE: 𝑐Δ𝑡 ≤ Δ𝑥2

Damaged State: 𝜙 = 1Undamaged State: 𝜙 = 0
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𝑔(𝜙): Degradation function

𝑙: Length scale parameter

𝐺𝑐: Critical energy release rate
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𝑐: wave speed

𝑚: mobility parameter

• MPM by Sulsky [2] is an efficient mesh free method to solve for fragmentation problems:
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Mesh Refinement Study
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Remarks

✓ Crack initiation in 

complex geometry

✓ Crack branching

✓ Fragmentation of 

the material
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