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Abstract

The Material Point Method (MPM) suffers from suboptimal accuracy and convergence rates as well as pressure oscillation due to the under-integration of the weak form; the material point locations
with respect to the background mesh are suboptimal in performing numerical quadrature. We present an MPM framework that employs the reproducing kernel (RK) approximation to overcome pressure
oscillation due to the cell-crossing instability, as well as a variationally consistent (VC) integration technique to recover optimal accuracy and convergence rates.
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Reproducing Kernel (RK) Approximation Variationally Consistent Integration A
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Conclusions

We present a Material Point Method (MPM) formulation that employs the reproducing kernel approximation to alleviate the cell-crossing instability, as well as a variationally consistent integration
technigue to recover optimal accuracy and convergence properties. Various numerical examples benchmark the presented MPM framework, and its application into large deformation problems involving
plastic deformation as well as fracture is currently under investigation.
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