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Abstract

Fragmentation problems in solid mechanics is challenging for conventional mesh-based formulations such as the finite element method (FEM). To address this issue, a phase-field material point method (PF-
MPM) is presented. The phase field method regularizes the strongly discontinuous crack geometry into a diffusive damage representation, providing discretization independence. The material point method can
effectively bypass mesh distortion and entanglement. A dynamic hyperbolic phase-field equation is proposed for explicit time integration. Numerical examples are provided to benchmark the performance.

Phase-Field Theory for Fracture Mechanics

» The phase-field method [1] models a sharp crack into diffusive crack (damage) represented by the

phase-field (scalar) variable ¢ € [0,1]:
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 Fracture energy approximation at the crack surface:

Phase-field (¢)

o

Sharp Interface

J G.dl ~ f G.A(L $)dQ = g—l j (a(P) + 12(V)?)dQ
Q

Ie Q

« Undamaged tensile strain energy: « History field variable:
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Total potential energy of the solid (¥):
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g(¢): Degradation function
[: Length scale parameter
G.: Critical energy release rate
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Hyperbolic phase-field evolution PDE can be given as

» Coupled equations for displacement and phase-field variable:

Mesh Refinement Study
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CFL Conditions: For Hyperbolic PDE: cAt < Ax
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Dynamic Phase-Field Material Point Method

MPM by Sulsky [2] is an efficient mesh free method to solve for fragmentation problems:

Grid Resetting

Galerkin form of momentum balance and phase field evolution equations reads as [3]:
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c: wave speed
m: mobility parameter

For Parabolic PDE: cAt < Ax?

« CFL condition for Hyperbolic PDE allows relaxed timestep selection.

Dynamic Crack Branching, Initiation and Fragmentation Problems using PF-MPM
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In this study, we have presented a phase-field material point method for modeling fracture and fragmentation problems. Phase field formulation for fracture mechanics exhibits mesh independency and accurate
crack propagation. By adding a second-order time derivative term in the PF-MPM, the system is converted into a hyperbolic equation that is suitable for explicit time integration, significantly reducing
computational cost. In the numerical testing, PF-MPM have shown promising feature in solving fragmentation problems, that was challenging for traditional mesh-based methods like FEM. We also
demonstrated the effectiveness of the dynamic phase-field formulation in simulating complex fracture behavior such as crack initiation and branching.
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