Combinatorics Qualifying Examination

NTNU Math Ph.D. Program, Fall 2019

1. (10%) What is the expected number of fixed points of a permutation in $S(n)$?
2. (10%) Let a_{n} be the number of n-words over the alphabet $\{0,1,2\}$ that contain no neighboring 0 's, e.g., $a_{1}=3, a_{2}=8, a_{3}=22$. Find the generating function of a_{n}.
3. (15%) Let a_{n} be the number of self-conjugate partitions of n. Prove the following identities:
(a) $\sum_{n \geq 0} a_{n} z^{n}=\prod_{i \geq 1}\left(1+z^{2 i-1}\right)$.
(b) $\sum_{n \geq 0} \frac{q^{n} z^{n^{2}}}{\left(1-z^{2}\right)\left(1-z^{4}\right) \cdots\left(1-z^{2 n}\right)}=\prod_{i \geq 1}\left(1+q z^{2 i-1}\right)$
(c) $\prod_{i \geq 1}\left(1+z^{i}\right)=\prod_{i \geq 1}\left(1-z^{2 i-1}\right)^{-1}$
4. Let $i_{n}^{(r)}$ be the number of permutations in $S(n)$ with no cycles of length greater than r.
(a) (5%) Prove $i_{n+1}^{(2)}=i_{n}^{(2)}+n i_{n-1}^{(2)}$.
(b) (10%) Prove $i_{n+1}^{(r)}=\sum_{k=n-r+1}^{n} n \frac{n-k}{n} i_{k}^{(r)}$.
5. (10%) A permutation $\sigma \in S(n)$ is called connected if for any $k, 1 \leq k<n$, $\{\sigma(1), \sigma(2), \ldots, \sigma(k)\} \neq[k]$. Find the number of connected permutations in $S(8)$.
6. (10%) Toss a fair coin until you get heads for the n-th time. Let X be the number of throws necessary. What are $P_{X}(z), E(X)$, and $\operatorname{Var}(X)$?
7. (10%) Let a_{n} be the number of ordered set partitions of $\{1, \ldots, n\}$. Compute $\sum_{n \geq 0} a_{n} \frac{z^{n}}{n!}$.
8. (10%) Let S be the family of k-subsets of $\{1,2, \ldots, 2 n\}$. For $A \in S$ let $w(A)=\sum_{i \in A} i$, and set $S^{+}=\{A \in S \mid w(A)$ even $\}, S^{-}=\{A \in S \mid w(A)$ odd $\}$. Find an alternating involution to show that

$$
\left|S^{+}\right|-\left|S^{-}\right|= \begin{cases}0, & k \text { odd } \\ (-1)^{k / 2}\binom{n}{k / 2}, & k \text { even } .\end{cases}
$$

9. (10%) Show that any permutation of $\{1,2, \ldots, m n+1\}$ contains an increasing subword of length $m+1$ or a decreasing subword of length $n+1$.
