Geometry and Topology Qualifying Examination Fall 2020

October 30, 2020

- 1. Let (M^n, g) be a Riemannian manifold.
 - (a) Define the Levi-Civita connection on M. (5%)
 - (b) Let $p \in M$ and U be a local chart of p. Suppose (x_1, \dots, x_0) is the local coordinate on U. Define the Christoffel symbols $\Gamma_{ij}^k(i, j, k = 1, \dots, n)$ by

$$\nabla_{\frac{\partial}{\partial x_i}}\frac{\partial}{\partial x_i} = \Gamma^k_{ij}\frac{\partial}{\partial x_k}.$$

Show that $\Gamma_{ij}^k = \Gamma_{ji}^k$. (10%)

- (c) Define the Riemann curvature R(X, Y)Z for any $X, Y, Z \in TM$. (5%)
- (d) State and prove the Bianchi Identity of the Riemann curvature tensor R. (10%)
- 2. Let M be a Riemannian manifold and $f \in C^3(M)$. Suppose $\{x_i\}_{i=1}^n$ is a normal coordinate system at $p \in M$. Derive the following Bochner formula:

$$\frac{1}{2}\Delta|\nabla f|^2 = \sum_{i,j} |f_{ij}|^2 + \sum_{i,j} R_{ij}f_if_j + \sum_i f_i(\Delta f)_i$$

where f_i denotes the derivative of f with respect to $\frac{\partial}{\partial x_i}$ and R_{ij} is the Ricci curvature. (15%)

- 3. Let $M^2 \subseteq \mathbb{R}^3$ be an embedded compact, closed surface of genus ≥ 1 . Show that the Gaussian curvature of M must be vanish somewhere on M. (15%)
- 4. Consider the torus of revolution T obtained by rotating the circle $(x-a)^2 + Z^2 = r^2$ around z-axis:

$$T = \{(x, y, z) | (x^2 + y^2 + z^2 + a^2 - r^2)^2 - 4a^2(x^2 + y^2) = 0\}$$

Parametrize this torus, compute its Gaussian curvature function K, and verify $\int_T K dA = 0$ by explicit calculation. (20%)

5. Let (M, g) be a Riemannian manifold. Let $p \in M$ and the map $exp_p : B_{\varepsilon}(0) \subset T_p M \to M$ is the exponential map at p which is always defined in a small neighborhood $B_{\varepsilon}(0)$ of the origin of $T_p M$. Show that there exists a $\delta > 0$ such that

$$exp_p: B_{\delta}(0) \subset T_pM \to M$$

is a diffeomorphism onto its image. (10%)

6. Show that there does not exist any nonconstant harmonic function on a compact, connected Riemannian manifold without boundary. (10%)