You only need to choose 8 problems to answer.

- **1.** Let G be a group and N, H be subgroups of G. Suppose that $N \triangleleft G$, |H| is finite and [G:N] is finite. If [G:N] and |H| are relatively prime, show that H is contained in N.
- **2.** Let G be a group of order 2012.
 - (a) Find the number of subgroups of order 503.
 - (b) Find the number of elements of order 503.
- **3.** Let R be a principal ideal domain and let J be a nonzero ideal of R. Show that J is a maximal ideal of R if and only if J is a prime ideal of R.
- 4. Let \mathbb{Z} be the ring of integers and \mathbb{Q} the additive group of rational numbers. Show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$ as groups.
- **5.** Let $f(x) = x^4 2 \in \mathbb{Q}[x]$ and let $u = \sqrt[4]{2}$ be the positive real fourth root of 2. Suppose that $F \subseteq \mathbb{C}$ is a splitting field of f(x) over \mathbb{Q} .
 - (a) Show that f(x) is irreducible over \mathbb{Q} .
 - (b) Is $\mathbb{Q}(u)$ normal over \mathbb{Q} ?
 - (c) Find the order of the Galois group $\operatorname{Aut}_{\mathbb{Q}} F$.
- **6.** Let G be a group and let $n \in \mathbb{N}$. Suppose H is the only subgroup of G of order n. Prove that H is a normal subgroup of G.
- 7. Let G be a finitely generated abelian group in which no element, except 0, has finite order. Prove that G is a free abelian group.
- 8. Let I be an ideal in a commutative ring R. Let $\operatorname{Rad} I = \{r \in R \mid r^n \in I \text{ for some } n \in \mathbb{N}\}$. Prove that $\operatorname{Rad} I$ is an ideal of R.
- **9.** Let R be a ring with identity and suppose $f : A \to B$ and $g : B \to A$ are R-module homomorphisms such that $gf = 1_A$. Prove that $B = \text{Im} f \oplus \text{Ker} g$, i.e., B = Im f + Ker g and $\text{Im} f \cap \text{Ker} g = 0$.
- 10. Let F be an extension field of a field K and let $u, v \in F$ be algebraic over K. Suppose the irreducible polynomials of u and v over K have degree m and n respectively.
 - (a) Prove that $[K(u, v) : K] \leq mn$.
 - (b) If we further assume that m and n are relatively prime, prove that [K(u, v) : K] = mn.

國立台灣師範大學數學系博士班資格考試

科目:代數

2013年4月30日

- 1. (16 pts) Let $f: G \to H$ be a group homomorphism.
 - (a) Suppose $a \in G$ has finite order n. Prove that $f(a) \in H$ has finite order m with $m \mid n$.
 - (b) Suppose G is cyclic and f is onto. Prove that H is also cyclic.
- 2. (18 pts) Let G be a finite group with $|G| = p^n q$ $(n \ge 1)$ where p, q are primes such that p > q.
 - (a) Show that G is not a simple group.
 - (b) Assume that G acts on a set X with |X| = q. Show that this action must be either trivial or transitive. (Recall that G acts on X trivially if $g \cdot x = x$ for all $x \in X$ and all $g \in G$ and the action is transitive if for any $x_1, x_2 \in X$ there exists a $g \in G$ such that $x_2 = g \cdot x_1$.)
- 3. Let R be a commutative ring with identity 1.
 - (a) (10 pts) Let M be an ideal of R. Prove that M is a maximal ideal if and only if for every $r \in R \setminus M$, there exists $x \in R$ such that $1 rx \in M$.
 - (b) (12 pts) Let J be the intersection of all maximal ideals of R and let U(R) be the group of units of R. Prove that $1 + J = \{1 + x \mid x \in J\}$ is a subgroup of U(R).
- 4. (12 pts) Let R be a principal ideal domain and let B be a submodule of a unitary R-module A. Suppose A can be generated by n elements with $n < \infty$. Prove that B can be generated by m elements with $m \leq n$.
- 5. (14 pts)
 - (a) Construct a finite field of 125 elements. Does there also exist a finite field of 120 elements? (You need to explain your answer.)
 - (b) Let \mathbb{E} be a finite extension of a finite field \mathbb{F} . Show that \mathbb{E} must be a Galois extension of \mathbb{F} such that the Galois group $\operatorname{Aut}_{\mathbb{F}}(\mathbb{E})$ of \mathbb{E} over \mathbb{F} is a cyclic group.
- 6. (18 pts) Let $K = \mathbb{C}(t)$ be the rational function field in the variable t over the complex numbers \mathbb{C} . Let n be a positive integer and let $f(x) = x^n + t \in K[x]$.
 - (a) Prove or disprove that f(x) is irreducible over K.
 - (b) Let \overline{K} be an algebraic closure of K and let $u \in \overline{K}$ be a zero of f(x). Let L = K(u). Show that L is Galois over K and that for every divisor d of n there exists a unique intermediate subfield M of L (i.e. $K \subseteq M \subseteq L$) such that [M:K] = d.

Fall 2013

- Please choose Five of the following six questions to answer.
- 1. (a) Let G be a group and suppose that H is a normal subgroup of G. If H is cyclic, prove that every subgroup of H is normal in G.
 - (b) Find a finite group G which has subgroups H and K satisfying the following conditions:
 - i. H is a normal subgroup of K.
 - ii. K is a normal subgroup of G.
 - iii. H is not a normal subgroup of G.
- 2. Let G be a group of order 2013.
 - (a) Show that G has a normal subgroup of order 11.
 - (b) Show that G has a subgroup of order 33 and such a subgroup is abelian.
- 3. Let R be a ring with identity 1. Recall that an ideal P in R is said to be prime if $P \neq R$ and for any ideals A, B in R, we have $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$. Now suppose that I is an ideal of R and $I \neq R$. Show that the following are equivalent.
 - (a) I is a prime ideal of R.
 - (b) If $r, s \in R$ such that $rRs \subseteq I$, then $r \in I$ or $s \in I$.
- 4. Consider \mathbb{Q} as a \mathbb{Z} -module.
 - (a) Prove that any two distinct elements $\alpha, \beta \in \mathbb{Q} \setminus \{0\}$ are linearly dependent over \mathbb{Z} .
 - (b) Prove that no element in \mathbb{Q} can generate \mathbb{Q} over \mathbb{Z} , i.e., for any $q \in \mathbb{Q}$, $\langle q \rangle \subsetneq \mathbb{Q}$ where $\langle q \rangle = \{nq \mid n \in \mathbb{Z}\}.$
 - (c) Prove that \mathbb{Q} is not a free \mathbb{Z} -module.
- 5. (a) Prove that $x^3 + 2x + 1 \in \mathbb{Z}_7[x]$ is an irreducible polynomial in $\mathbb{Z}_7[x]$.
 - (b) Construct a field of 27 elements.
 - (c) Is there a field of 2013 elements? Explain your answer.
- 6. (a) Let $u \in \mathbb{C}$ be a zero of the polynomial $x^4 + 2x + 2$. Please write $\frac{1}{u}$ as a polynomial of u, i.e., find a polynomial $f(x) \in \mathbb{Q}[x]$ such that $\frac{1}{u} = f(u)$.
 - (b) Let K be an algebraic extension field of a field F and let D be an integral domain such that $F \subseteq D \subseteq K$. Prove that D is indeed a field.

Algebra Qualifying Exam Spring 2014

- **1.** Show that every finitely generated subgroup of the additive group \mathbb{Q} is cyclic. (8 pts)
- 2. (a) Define the characteristic of a ring. (4 pts)
 - (b) Let F be a field. Show that the characteristic of F is either 0 or a prime p. (8 pts)
 - (c) Let F be a finite field of prime characteristic p. Show that F has p^n elements for some positive integer n. (8 pts)
- **3.** Show that a group of order p^2q , where p and q are distinct primes, contains a normal Sylow subgroup. (12 pts)
- 4. Let $R = \mathbb{Z}/7\mathbb{Z}$.
 - (a) Show that the polynomial ring R[x] is a principal ideal domain. (8 pts)
 - (b) Find all prime ideals of the ring $R[x]/\langle x^2 2 \rangle$. (8 pts)
- **5.** Let $F = \mathbb{Q}(\sqrt{3}, \sqrt{11})$.
 - (a) Find the Galois group $\operatorname{Aut}_{\mathbb{Q}} F$. (6 pts)
 - (b) Find the corresponding intermediate fields of F. (6 pts)
 - (c) Find all normal extensions of \mathbb{Q} in F. (6 pts)
- 6. Show that any ring with identity is isomorphic to a ring of endomorphisms of an abelian group. (8 pts)
- 7. Let R be a commutative ring with identity and let M be a finitely generated R-module. Let $f: M \to R^n$ be a surjective R-module homomorphism. Show that Ker f is finitely generated. (8 pts)
- 8. Let G be a group and let $C(G) = \{a \in G \mid ga = ag, \forall g \in G\}.$
 - (a) Prove that C(G) is a normal subgroup of G. (8 pts)
 - (b) Prove that if G/C(G) is cyclic then G is abelian. (8 pts)
- **9.** Let R be a commutative ring with identity and let $I = \{r \in R \mid r^n = 0 \text{ for some } n \in \mathbb{N}\}$.
 - (a) Prove that I is an ideal of R. (6 pts)
 - (b) Prove that every prime ideal of R contains I. (6 pts)
- **10.** Let R be a ring with identity and let M be an R-module. Suppose $f : M \to M$ is an R-module homomorphism such that ff = f. Prove that $M = \text{Ker } f \oplus \text{Im } f$. (8 pts)
- 11. Suppose R is a commutative ring with identity such that every submodule of every free R-module is free. Prove that R is a principal ideal domain. (12 pts)
- 12. Prove that no finite field is algebraically closed. (8 pts)

- **1.** Let G be an abelian group and let $a, b \in G$. Suppose the order of a is m and the order of b is n and gcd(m, n) = 1. Prove that the order of ab is mn. (10 pts)
- **2.** Let G be a group of order 63.
 - (a) Prove that G is not simple. (6 pts)
 - (b) Prove that G contains a subgroup of order 21. (8 pts)
- **3.** Prove that \mathbb{Q} is not a free abelian group, i.e., not a free \mathbb{Z} -module. (12 pts)
- **4.** Let R and S be commutative rings with $1 \neq 0$ and let $f : R \rightarrow S$ be a homomorphism of commutative rings. Suppose J is an ideal of S.
 - (a) Prove that $f^{-1}(J) = \{a \in R \mid f(a) \in J\}$ is an ideal of R. (5 pts)
 - (b) Assume $f(1_R) = 1_S$ and J is a prime ideal of S. Prove that $f^{-1}(J)$ is a prime ideal of R. (7 pts)
- 5. Let R be a commutative ring with identity $1 \neq 0$ and let J be the intersection of all maximal ideals of R. Consider an element $x \in R$.
 - (a) Suppose $x \in J$. Prove that 1 + x is a unit in R. (6 pts)
 - (b) Suppose $x \notin J$. Prove that there exists an element $r \in R$ such that 1 rx is not a unit in R. (8 pts)
- 6. Let R be an integral domain and let A be a unitary R-module. Prove that

$$T(A) = \{a \in A \mid ra = 0 \text{ for some nonzero } r \in R\}$$

is a submodule of A. (8 pts)

- 7. Let R be a principal ideal domain and let A be a finitely generated unitary R-module. Suppose A can be generated by n elements and let B be a submodule of A. Prove that B can be generated by m elements with $m \leq n$. (10 pts)
- 8. Prove that $\mathbb{Q}[i]$ and $\mathbb{Q}[\sqrt{2}]$ are isomorphic as \mathbb{Q} -vector spaces but they are not isomorphic as fields. (8 pts)
- **9.** Let $K \leq E \leq F$ be fields and suppose F is a cyclic extension of K, *i.e.*, F is algebraic and Galois over K and the Galois group $\operatorname{Aut}_K F$ is cyclic. Prove that F is a cyclic extension of E and E is a cyclic extension of K. (12 pts)

Algebra Qualifying Exam Spring 2016

- 1. (a) Please state Lagrange's Theorem. (4 pts)
 - (b) Please state Cauchy's Theorem. (4 pts)
 - (c) Please state the First Isomorphism Theorem. (4 pts)
- **2.** Let G_1 and G_2 be groups. Suppose N_1 is a normal subgroup of G_1 and N_2 is a normal subgroup of G_2 . Prove that $N_1 \times N_2$ is a normal subgroup of $G_1 \times G_2$ and

$$(G_1 \times G_2)/(N_1 \times N_2) \simeq G_1/N_1 \times G_2/N_2.$$
 (12 pts)

- **3.** Let p > q be two prime numbers and suppose G is a group of order p^2q .
 - (a) Prove that G is not simple. (7 pts)
 - (b) Prove that G contains at least three cyclic subgroups. (7 pts)
- 4. Suppose R is a ring such that $r^2 = r$ for all $r \in R$. Prove that R is commutative. (8 pts)
- 5. Let R be a commutative rings with $1 \neq 0$ and let $J = \{r \in R \mid r^n = 0 \text{ for some } n \in \mathbb{N}\}$.
 - (a) Prove that J is an ideal of R. (7 pts)
 - (b) Suppose P is a prime ideal of R. Prove that $J \subseteq P$. (7 pts)
- 6. (a) Let R be a commutative ring and let 0 → A → B → C → 0 be a sequence of R-modules and R-module homomorphisms. What does it mean that this sequence is exact? (7 pts)
 - (b) Suppose $0 \to V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} V_3 \xrightarrow{f_3} V_4 \xrightarrow{f_4} V_5 \to 0$ is an exact sequence of \mathbb{Q} -vector spaces and linear transformations. Prove that

 $\dim V_1 + \dim V_3 + \dim V_5 = \dim V_2 + \dim V_4.$ (7 pts)

- 7. Let F be an algebraically closed field. Prove that $|F| = \infty$. (8 pts)
- 8. Let F be an extension field of a field K.
 - (a) What does it mean that F is normal over K? (6 pts)
 - (b) Is $\mathbb{Q}(\sqrt[4]{2})$ normal over \mathbb{Q} ? Please explain your answer. (6 pts)
 - (c) Is $\mathbb{Q}(\sqrt[4]{2}, i)$ normal over \mathbb{Q} ? Please explain your answer. (6 pts)

- 1. Let G be a simple group of order 168.
 - (a) (8 pts) Find the number of elements of order 7 in G.
 - (b) (6 pts) Suppose that P is a Sylow 7-subgroup of G and $\mathbf{N}_G(P)$ is the normalizer of P in G. Find the order of $\mathbf{N}_G(P)$.
 - (c) (8 pts) Prove that G has no element of order 14.
- 2. Let G be a group. Recall that for each $g \in G$, a map $\theta_g : G \to G$ given by $\theta_g(x) = gxg^{-1}$ is called an inner automorphism of G. Let Inn(G) be the group of all inner automorphisms of G.
 - (a) (8 pts) Let $\mathbf{Z}(G)$ be the center of G. Prove that $G/\mathbf{Z}(G) \cong \text{Inn}(G)$.
 - (b) (8 pts) Let S_4 be the symmetric group of degree 4. Show that $S_4 \cong \text{Inn}(S_4)$.
- 3. (10 pts) If R is a principal ideal domain, is it always true that the polynomial ring R[x] is a principal ideal domain? Justify your answer.
- 4. (10 pts) Let R be a ring with 1 and let M be a unitary R-module. Suppose $f: M \to M$ is an R-module homomorphism such that ff = f. Prove that $M = \text{Ker} f \oplus \text{Im} f$.
- 5. (10 pts) Let R be a principal ideal domain and let A be a finitely generated unitary R-module. Suppose A can be generated by n elements and let B be a submodule of A. Prove that B can be generated by m elements with $m \leq n$.
- 6. Let \mathbb{Q} be the field of rational numbers and let \mathbb{C} be the field of complex numbers. Let $f(x) = x^4 5$ in $\mathbb{Q}[x]$. Suppose that $E \subseteq \mathbb{C}$ is the splitting field of f(x) over \mathbb{Q} .
 - (a) (8 pts) Show that f(x) is irreducible over \mathbb{Q} .
 - (b) (8 pts) Let $\alpha = \sqrt[4]{5}$ be the unique positive real root of $x^4 5$. Let $i = \sqrt{-1}$ in \mathbb{C} . Show that $E = \mathbb{Q}(\alpha, i)$.
 - (c) (8 pts) Determine $[E:\mathbb{Q}]$.
 - (d) (8 pts) Let $K = \mathbb{Q}(\sqrt{5})$. Determine the Galois group $\operatorname{Aut}_K E$.

Algebra Qualifying Exam. Spring 2019

- (a) Let F be a field and let F*=F {0} be the multiplicative group of F. Show that every finite subgroup of F* is cyclic. (10 pts)
 (b) Describe all finite subgroups of C*=C {0}, where C is the field of complex numbers. (5 pts)
- 2. (a) Let $f(x) \in Q[x]$ with degree n. Show that if f(x) is irreducible over Q, then the Galois group G_f of f(x) over Q is a transitive subgroup of S_n . (8 pts)

(b) For $f(x) = x^5 - 6x + 3$, show that the Galois group G_f of f(x) over Q is S_5 .

(7 pts)

- 3. Let R be a ring and J be an ideal of R.
 - (a) Show that $M_{2\times 2}(J)$ is an ideal of $M_{2\times 2}(R)$. (5 pts)
 - (b) Show that every ideal of $M_{2\times 2}(R)$ is of the form $M_{2\times 2}(J)$, where J is an ideal of R. (12 pts)
- 4. (a) Find the ideal consists of all the nilpotent elements of the ring Z₁₂. (5 pts)
 (b) For a commutative ring R with 1, show that the ideal of R which consists of all the nilpotent elements of R is equal to the intersection of all prime ideals of R. (12 pts)
- 5. Let G be a nonabelian group of order 12 which has a normal subgroup of order 4.
 (a) Show that G has 4 Sylow 3-subgroups . (6 pts)
 (b) Show that G is isomorphic to the Alternating group A₄ . (10pts)
- 6. Let G be a finite group and let p be the smallest prime divisor of the order of G. Show that every subgroup H of G of index p is a normal subgroup of G. (10 pts)
- 7. Let R be a ring with identity. Suppose M_1 , M_2 and N are submodules of an R-module M such that M_1 is a submodule of M_2 . Show that there is an exact sequence of R-modules

$$0 \to (M_2 \cap N)/(M_1 \cap N) \to M_2/M_1 \to (M_2 + N)/(M_1 + N) \to 0.$$
 (10 pts)

Notations : Q : The field of rational numbers. $M_{2\times 2}(R)$: 2×2 matrix ring over R.

- 1. Let S_n be the symmetric group of degree n. Let A_n be the alternating group of degree n.
 - (a) Find the number of elements of order 3 in S_5 . (6 pts)
 - (b) Let P be a Sylow 3-subgroup of S_5 . Let N be the normalizer of P in S_5 . Find the order of N. (6 pts)
 - (c) Find the number of Sylow 2-subgroups of S_4 . (6 pts)
 - (d) Show that S_4 is solvable. (8 pts)
 - (e) Is it true that every finite group is isomorphic to a subgroup of A_n for some positive integer n? (8 pts)
- 2. Let R be a ring with identity. An element r in R is called nilpotent if $r^n = 0$ for some positive integer n. An ideal I of R is called nil if every element of I is nilpotent. Suppose that R is not commutative. For any two nil ideals J, K of R, is it always true that J + K is nil? (10 pts)
- 3. If R is a unique factorization domain, show that every nonzero prime ideal in R contains a nonzero principal ideal that is prime. (10 pts)
- 4. Let R be a ring with identity. Let A, B be R-modules. Let 1_A be the identity function on A. Suppose $f : A \to B$ and $g : B \to A$ are R-module homomorphisms such that $gf = 1_A$. Prove that $B = \text{Im} f \oplus \text{Ker } g$. (10 pts)
- 5. Let K be a field and let f(x) be a polynomial in K[x] of positive degree. Let E be a splitting field of f(x) over K and let $G = \operatorname{Aut}_K(E)$ be the Galois group of f. Let $\Lambda = \{ \alpha \in E \mid f(\alpha) = 0 \}$. We use $\operatorname{Sym}(\Lambda)$ to denote the group of all bijections on Λ under the operation of function composition.
 - (a) Show that G is isomorphic to a subgroup of $Sym(\Lambda)$. (8 pts)
 - (b) If f(x) is irreducible separable over K and f(x) has degree n, show that n divides |G| and G is isomorphic to a transitive subgroup of S_n . (10 pts)
- 6. Let $f(x) = x^4 + 2x^2 + 4 \in \mathbb{Q}[x]$.
 - (a) Show that f(x) is irreducible over \mathbb{Q} . (8 pts)
 - (b) Let E be the splitting field of f(x) over \mathbb{Q} in \mathbb{C} . Determine the Galois group $\operatorname{Aut}_{\mathbb{Q}}E$ of f(x) over \mathbb{Q} . (10 pts)

Algebra Qualifying Exam Spring 2020

- Let \mathbb{Q} be the field of rational numbers.
- Let \mathbb{R} be the field of real numbers.
- 1. (20 pts) Let G be a group. Let G' be the commutator subgroup of G. Let G'' be the commutator subgroup of G'.
 - (a) If H is a subgroup of G, show that $N_G(H)/C_G(H)$ is isomorphic to a subgroup of Aut(H).
 - (b) If G'' is cyclic, show that G'' is contained in the center of G'.
- 2. (10 pts) Let D be the dihedral group of order 2n. Write $2n = 2^k m$ where k, m are positive integers and m is odd. Show that D has exactly m Sylow 2-subgroups.
- 3. (20 pts) Let R be a ring with 1 and let $M_2(R)$ be the ring of 2×2 matrices over R. If I is an ideal of R, we know that $M_2(I)$ is an ideal of $M_2(R)$.
 - (a) Show that if J is an ideal of $M_2(R)$, then $J = M_2(I)$ for some ideal I of R.
 - (b) If L is a maximal ideal of R, is it always true that $M_2(L)$ is a maximal ideal of $M_2(R)$?
- 4. (20 pts) Let R be a ring and let

be a commutative diagram of R-modules and R-module homomorphisms with exact rows. Suppose that α is an epimorphism and δ is a monomorphism.

- (a) If β is a monomorphism, show that γ is a monomorphism.
- (b) If γ is an epimorphism, show that β is an epimorphism.
- 5. (15 pts)
 - (a) Suppose $\sigma \in \operatorname{Aut}_{\mathbb{Q}}(\mathbb{R})$ and $r \in \mathbb{R}$. If r > 0, show that $\sigma(r) > 0$.
 - (b) Prove that $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{R})$ is the trivial group.
- 6. (15 pts) Let $f(x) = (x^3 2)(x^2 + 3) \in \mathbb{Q}[x]$. Let K be a splitting field of f(x) over \mathbb{Q} . Determine the Galois group $\operatorname{Aut}_{\mathbb{Q}}(K)$ of f(x).

- Let \mathbb{Q} be the field of rational numbers.
- 1. (15 pts) Let A_n be the alternating group of degree n. Let D_n be the dihedral group of order 2n. Determine if the following statements are true. Justify your answer.
 - (a) Any finite group is isomorphic to a subgroup of A_n for some positive integer n.
 - (b) Any finite group is isomorphic to a subgroup of D_n for some positive integer n.
- 2. (20 pts) Let G be a finite group and let p be a prime. For convenience, we use $n_p(G)$ to denote the number of Sylow p-subgroups of G. Suppose that H is a group and there is a surjective group homomorphism $\varphi: G \to H$.
 - (a) If P is a Sylow p-subgroup of G, show that $\varphi(P)$ is a Sylow p-subgroup of H.
 - (b) Prove that $n_p(H) \leq n_p(G)$.
- 3. (20 pts)
 - (a) Let $c \in F$, where F is a field of characteristic p > 0. Prove that $x^p x c$ is irreducible in F[x] if and only if $x^p x c$ has no root in F.
 - (b) Find an element $c \in \mathbb{Q}$ such that the polynomial $f(x) = x^5 x c$ has no root in \mathbb{Q} and f(x) is reducible in $\mathbb{Q}[x]$.
- 4. (15 pts) Let R be a ring with 1 and let

$$\begin{array}{cccc} A_1 & \stackrel{f}{\longrightarrow} & A_2 & \stackrel{g}{\longrightarrow} & A_3 \\ \downarrow^{\alpha} & & \downarrow^{\beta} & & \downarrow^{\gamma} \\ B_1 & \stackrel{f'}{\longrightarrow} & B_2 & \stackrel{g'}{\longrightarrow} & B_3 \end{array}$$

be a commutative diagram of *R*-modules and *R*-module homomorphisms with exact rows. Suppose that α and g are epimorphisms and β is a monomorphism. Prove that γ is a monomorphism.

- 5. (15 pts) Construct a finite field of order 125.
- 6. (15 pts) Let $f(x) = x^3 2x + 2 \in \mathbb{Q}[x]$. Let K be a splitting field of f(x) over \mathbb{Q} . Determine the Galois group $\operatorname{Aut}_{\mathbb{Q}}(K)$ of f(x).