Geometry and Topology Qualifying Examination Fall 2020

October 30, 2020

- 1. Let (M^n, g) be a Riemannian manifold.
 - (a) Define the Levi-Civita connection on M. (5%)
 - (b) Let $p \in M$ and U be a local chart of p. Suppose (x_1, \dots, x_0) is the local coordinate on U. Define the Christoffel symbols $\Gamma_{ij}^k(i, j, k = 1, \dots, n)$ by

$$\nabla_{\frac{\partial}{\partial x_i}}\frac{\partial}{\partial x_i} = \Gamma^k_{ij}\frac{\partial}{\partial x_k}.$$

Show that $\Gamma_{ij}^k = \Gamma_{ji}^k$. (10%)

- (c) Define the Riemann curvature R(X, Y)Z for any $X, Y, Z \in TM$. (5%)
- (d) State and prove the Bianchi Identity of the Riemann curvature tensor R. (10%)
- 2. Let M be a Riemannian manifold and $f \in C^3(M)$. Suppose $\{x_i\}_{i=1}^n$ is a normal coordinate system at $p \in M$. Derive the following Bochner formula:

$$\frac{1}{2}\Delta|\nabla f|^2 = \sum_{i,j} |f_{ij}|^2 + \sum_{i,j} R_{ij}f_if_j + \sum_i f_i(\Delta f)_i$$

where f_i denotes the derivative of f with respect to $\frac{\partial}{\partial x_i}$ and R_{ij} is the Ricci curvature. (15%)

- 3. Let $M^2 \subseteq \mathbb{R}^3$ be an embedded compact, closed surface of genus ≥ 1 . Show that the Gaussian curvature of M must be vanish somewhere on M. (15%)
- 4. Consider the torus of revolution T obtained by rotating the circle $(x-a)^2 + Z^2 = r^2$ around z-axis:

$$T = \{(x, y, z) | (x^2 + y^2 + z^2 + a^2 - r^2)^2 - 4a^2(x^2 + y^2) = 0\}$$

Parametrize this torus, compute its Gaussian curvature function K, and verify $\int_T K dA = 0$ by explicit calculation. (20%)

5. Let (M, g) be a Riemannian manifold. Let $p \in M$ and the map $exp_p : B_{\varepsilon}(0) \subset T_p M \to M$ is the exponential map at p which is always defined in a small neighborhood $B_{\varepsilon}(0)$ of the origin of $T_p M$. Show that there exists a $\delta > 0$ such that

$$exp_p: B_{\delta}(0) \subset T_pM \to M$$

is a diffeomorphism onto its image. (10%)

6. Show that there does not exist any nonconstant harmonic function on a compact, connected Riemannian manifold without boundary. (10%)

Geometry and Topology Qualifying Examination Spring 2021

April 28, 2021

1. Let ∇ be the Levi-Civita connection on a Riemannian *n*-manifold *M* with a metric g_{ij} defined by

$$g_{ij} = \langle \frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \rangle, \quad i, j = 1, \cdots, n.$$

Define the Christoffel symbol Γ^k_{ij} by

$$\nabla_{\frac{\partial}{\partial x_i}}\frac{\partial}{\partial x_j} = \Gamma_{ij}^k\frac{\partial}{\partial x_k}, \quad i, j, k = 1, \cdots, n.$$

and the Riemannian curvature tensor ${\cal R}^m_{ijl}$ by

$$Rm(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j})\frac{\partial}{\partial x_l} = R^m_{ijl}\frac{\partial}{\partial x_m}$$
 and $R_{ijkl} = g_{mk}R^m_{ijl}$.

Here

$$Rm(\frac{\partial}{\partial x_i},\frac{\partial}{\partial x_j})\frac{\partial}{\partial x_l} = \nabla_{\frac{\partial}{\partial x_i}}\nabla_{\frac{\partial}{\partial x_j}}\frac{\partial}{\partial x_l} - \nabla_{\frac{\partial}{\partial x_j}}\nabla_{\frac{\partial}{\partial x_i}}\frac{\partial}{\partial x_l}.$$

Finally we define the Ricci curvature tensor and scalar curvature by

$$R_{ij} = g^{kl} R_{ikjl} \quad and \quad R = g^{ij} R_{ij}.$$

(a) (5%)Show that

$$\Gamma_{ij}^k = \Gamma_{ji}^k.$$

(b) (5%)Show that

$$\Gamma_{ij}^{k} = \frac{1}{2}g_{kl}(g_{lj,i} + g_{il,j} - g_{ij,l}). \quad \text{Here} \quad g_{ij,k} = \frac{\partial g_{ij}}{\partial x_{k}}.$$

(c) (5%)Show that

$$R^{m}_{\ ijl} = \frac{\partial}{\partial x_i} \Gamma^{m}_{jl} - \frac{\partial}{\partial x_j} \Gamma^{m}_{il} + \Gamma^{m}_{in} \Gamma^{m}_{jl} - \Gamma^{m}_{jn} \Gamma^{m}_{il}.$$

(d) (5%)Show that

$$\nabla_{\frac{\partial}{\partial x_i}} g_{jk} = 0.$$

(e) (10%)State and prove Branchi identity.

2. Let $\left(R^2,g(t)\right)$ be a complete Riemannian surface with

$$g(t) = \frac{dx^2 + dy^2}{e^{4t} + x^2 + y^2}, \quad dx^2 = dx \bigotimes dx.$$

(a) (10%) Show that in polar coordinates $(r,\theta),$ we may rewrite

$$g(0) = ds^2 + \tan h^2 s d\theta^2, \quad s = \log(r + \sqrt{1 + r^2}).$$

- (b) (10%) Show that the scalar curvature R_0 of (R^2, g_0) , $g_0 := g(0)$, satisfying $R_0 = \frac{4}{1+r^2}$.
- 3. (25%) Let M be an m-dimensional complete Riemannian manifold with

$$R_{ij} \ge (m-1)K$$
 for some $K > 0$.

Show that M is a compact manifold with diameter less than $\frac{\pi}{\sqrt{K}}$.

4. (25%) For disk $M=\{(x,y)\in R^2|x^2+y^2<1\}$ with the metric

$$ds^{2} = \frac{4}{(1-x^{2}-y^{2})^{2}}(dx^{2}+dy^{2})$$

Show that M is a complete Riemanifold with sectional curvature being -1 everywhere.