Combinatorics Qualifying Examination

NTNU Math Ph.D. Program, Fall 2019

- 1. (10%) What is the expected number of fixed points of a permutation in S(n)?
- 2. (10%) Let a_n be the number of *n*-words over the alphabet $\{0, 1, 2\}$ that contain no neighboring 0's, e.g., $a_1 = 3$, $a_2 = 8$, $a_3 = 22$. Find the generating function of a_n .
- 3. (15%) Let a_n be the number of self-conjugate partitions of n. Prove the following identities:

(a)
$$\sum_{n\geq 0} a_n z^n = \prod_{i\geq 1} (1+z^{2i-1}).$$

(b) $\sum_{n\geq 0} \frac{q^n z^{n^2}}{(1-z^2)(1-z^4)\cdots(1-z^{2n})} = \prod_{i\geq 1} (1+qz^{2i-1})$
(c) $\prod_{i\geq 1} (1+z^i) = \prod_{i\geq 1} (1-z^{2i-1})^{-1}$

4. Let $i_n^{(r)}$ be the number of permutations in S(n) with no cycles of length greater than r.

(a) (5%) Prove
$$i_{n+1}^{(2)} = i_n^{(2)} + n i_{n-1}^{(2)}$$
.
(b) (10%) Prove $i_{n+1}^{(r)} = \sum_{k=n-r+1}^n n \frac{n-k}{k} i_k^{(r)}$.

- 5. (10%) A permutation $\sigma \in S(n)$ is called connected if for any $k, 1 \leq k < n$, $\{\sigma(1), \sigma(2), \ldots, \sigma(k)\} \neq [k]$. Find the number of connected permutations in S(8).
- 6. (10%) Toss a fair coin until you get heads for the *n*-th time. Let X be the number of throws necessary. What are $P_X(z)$, E(X), and Var(X)?
- 7. (10%) Let a_n be the number of ordered set partitions of $\{1, \ldots, n\}$. Compute $\sum_{n \ge 0} a_n \frac{z^n}{n!}$.

8. (10%) Let S be the family of k-subsets of $\{1, 2, ..., 2n\}$. For $A \in S$ let $w(A) = \sum_{i \in A} i$, and set $S^+ = \{A \in S \mid w(A) \text{ even}\}, S^- = \{A \in S \mid w(A) \text{ odd}\}$. Find an alternating involution to show that

$$|S^{+}| - |S^{-}| = \begin{cases} 0, & k \text{ odd}; \\ (-1)^{k/2} \binom{n}{k/2}, & k \text{ even.} \end{cases}$$

9. (10%) Show that any permutation of $\{1, 2, ..., mn + 1\}$ contains an increasing subword of length m + 1 or a decreasing subword of length n + 1.

Combinatorics Qualifying Examination NTNU Math Ph.D. Program, Spring 2023

(10 points each)

1. (a) Evaluate

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} 2^{n-k}.$$

(b) Evaluate

$$\sum_{k=m}^{n} (-1)^k \binom{n}{k} \binom{k}{m}.$$

2. It is known there exists a unique sequence a_n of real numbers $(n \ge 0)$ such that for each n we have

$$\sum_{k=0}^{n} a_k a_{n-k} = 1$$

- (a) Find the generating function of a_n
- (b) Find a_n
- 3. Denote $x^{\underline{n}} = x(x-1) \dots (x-n+1)$ and $x^{\overline{n}} = x(x+1) \dots (x+n-1)$. $S_{n,k}$ is the Stirling number of the second kind. $s_{n,k}$ is the (signless) Stirling number of the first kind.
 - (a) Prove that

$$x^n = \sum_{k=0}^n S_{n,k} x^{\underline{k}}.$$

(b) Prove that

$$x^{\overline{n}} = \sum_{k=0}^{n} s_{n,k} x^k.$$

- 4. State and prove the q-binomial theorem.
- 5. Let V be an *n*-dimensional vector space over the finite field GF(q), where q is a prime power. Prove that $\begin{bmatrix} n \\ k \end{bmatrix}_q$ equals the number of k-dimensional subspaces of V.

- 6. Count the number of plane partitions whose number of rows is no greater than 3, number of columns is no greater than 3, and height are no greater than 4.
- 7. Color the vertices of a cube in 3 colors x, y, z. The cube is acted by its symmetries. Two colorings are equivalent if one can be obtained by applying a symmetry. An equivalent class is called a pattern. Compute the generating function of the pattern polynomials for all possible patterns.
- 8. Let $a \leq b$ are two elements of a poset *P*. δ is the identity and ζ is the zeta function of the incidence algebra of *P*. Define $\eta := \zeta \delta$.
 - (a) Show that

$$\sum_{k \ge 0} \eta^k(a, b) = \frac{1}{2\delta - \zeta}(a, b)$$

(b) What happens if appy this to the Boolean algebra $\mathbb{B}(n)$?

9. Prove

$$\prod_{k\geq 1} (1-q^{4k-3})(1-q^{4k-1})(1-q^{4k}) = \sum_{n=-\infty}^{\infty} (-1)^n q^{2n^2+n}.$$

10. How many rooted forests are there on $\{1, ..., n\}$ with k components?