Total score（100 points）：

1 （10 points）Find the general solution of $x^{\prime}=A x$ with

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
4 & 3 & -4 \\
1 & 2 & -1
\end{array}\right)
$$

Here，eigenvalues of the matrix A are 1，1，and 0.
2 （a）（5 points）Show that the van der Pol equation

$$
\frac{d^{2} x}{d t^{2}}+\mu\left(x^{2}-1\right) \frac{d x}{d t}+x=0
$$

is equivalent to the system

$$
\begin{aligned}
& \frac{d x}{d t}=y \\
& \frac{d t}{d t}=-x-\mu\left(x^{2}-1\right) y
\end{aligned}
$$

（b）（15 points）Find the stabilities of the critical point $(0,0)$ for the cases $\mu>0$ and $\mu<0$ ．

3 （15 points）Consider the nonlinear oscillator

$$
x^{\prime \prime}+c x^{\prime}+a x+b x^{3}=0,
$$

where $a, b, c>0$ ．Let $y=x^{\prime}$ ．Show that $(0,0)$ is Liapunov stable using Liapunov function of the form $V(x, y)=\alpha x^{2}+\beta x^{4}+\gamma y^{2}$ for $\alpha, \beta, \gamma>0$ ．

4 （15 points）Consider the following system

$$
\begin{aligned}
\frac{d x}{d t} & =x-y-x^{3} \\
\frac{d t}{d t} & =x+y-y^{3}
\end{aligned}
$$

Show that there is at least one stable limit cycle in the region $A=\{(x, y) \in$ $\mathbb{R}^{2}|1 \leq|(x, y)| \leq \sqrt{2}\}$ ．

5 （15 points）If $C \geq 0$ and $u, v:[0, \beta] \rightarrow[0, \infty)$ are continuous and

$$
u(t) \leq C+\int_{0}^{t} u(s) v(s) d s
$$

for all $t \in[0, \beta]$ ，then

$$
u(t) \leq C e^{v(t)}
$$

where $v(t)=\int_{0}^{t} v(s) d s$ ．
6 （a）（15 points）Let $n=2$ ．For any 2×2 constant real matrix A ，show that there exists an invertible real matrix P such that the matrix

$$
B=P^{-1} A P
$$

has one of the following forms

$$
\text { (i) }\left(\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right) \text { (ii) }\left(\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right) \text { (iii) }\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

where $\lambda, \mu, a, b \in \mathbb{R}$ ．Find P explicitly．
（b）（10 points）Let $A=\left(\begin{array}{ll}\lambda & \alpha \\ 0 & \mu\end{array}\right)$ ．where $\lambda, \mu, \alpha \in \mathbb{R}$ ．Solve the initial value problem：$x^{\prime}=A x, x(0)=x_{0}$ ．

Total score（100 points）：

1 （20 points）Find the fundamental matrix of $x^{\prime}=A x$ with

$$
A=\left(\begin{array}{ccc}
2 & -5 & 0 \\
0 & 2 & 0 \\
-1 & 4 & 1
\end{array}\right)
$$

2 （a）（4 points）Show that the van der Pol equation

$$
\frac{d^{2} x}{d t^{2}}+\mu\left(x^{2}-1\right) \frac{d x}{d t}+x=0
$$

is equivalent to the system

$$
\begin{aligned}
& \frac{d x}{d t}=y \\
& \frac{d t}{d t}=-x-\mu\left(x^{2}-1\right) y
\end{aligned}
$$

（b）（16 points）Characterize the types and the stabilities of the critical point $(0,0)$ for the cases $\mu>0$ and $\mu<0$ ．

3 （20 points）Consider the nonlinear oscillator

$$
x^{\prime \prime}+c x^{\prime}+a x+b x^{3}=0,
$$

where $a, b, c>0$ ．Let $y=x^{\prime}$ ．Show that $(0,0)$ is Liapunov stable using Liapunov function of the form $V(x, y)=\alpha x^{2}+\beta x^{4}+\gamma y^{2}$ for $\alpha, \beta, \gamma>0$ ．

4 Consider the following initial value problem（IVP）

$$
\begin{align*}
\frac{d}{d t}\binom{x}{y} & =\binom{x+y-x\left(x^{2}+y^{2}\right)}{-x+y-y\left(x^{2}+y^{2}\right)} \tag{1}\\
\binom{x(0)}{y(0)} & =\binom{\sqrt{2}}{1} \tag{2}
\end{align*}
$$

（i）（6 points）Show that the solution of the $\operatorname{IVP}(1)(2)$ stays in the region $D=\left\{(x, y) \left\lvert\, \frac{1}{2} \leq \sqrt{x^{2}+y^{2}} \leq 2\right.\right\}$ whenever it exists．
（ii）（6 points）Show that there exists a unique solution for IVP（1）（2），which exists for all $t \in \mathbb{R}$ ．
（iii）（8 points）Find the equilibrium of（1）．Discuss the asymptotical behavior of the solution for IVP（1）（2）as $t \rightarrow \infty$ ．

5 （20 points）Let r, k ，and f be real and continuous functions which satisfy $r(t) \geq 0, k(t) \geq 0$ ，and

$$
r(t) \leq f(t)+\int_{a}^{t} k(s) r(s) d s, \quad a \leq t \leq b .
$$

Show that

$$
r(t) \leq f(t)+\int_{a}^{t} f(s) k(s) \exp \left[\int_{s}^{t} k(u) d u\right] d s, \quad a \leq t \leq b .
$$

