Combinatorics Qualifying Examination

NTNU Math Ph.D. Program, Fall 2019

1. (10%) What is the expected number of fixed points of a permutation in $S(n)$?
2. (10%) Let a_{n} be the number of n-words over the alphabet $\{0,1,2\}$ that contain no neighboring 0 's, e.g., $a_{1}=3, a_{2}=8, a_{3}=22$. Find the generating function of a_{n}.
3. (15%) Let a_{n} be the number of self-conjugate partitions of n. Prove the following identities:
(a) $\sum_{n \geq 0} a_{n} z^{n}=\prod_{i \geq 1}\left(1+z^{2 i-1}\right)$.
(b) $\sum_{n \geq 0} \frac{q^{n} z^{n^{2}}}{\left(1-z^{2}\right)\left(1-z^{4}\right) \cdots\left(1-z^{2 n}\right)}=\prod_{i \geq 1}\left(1+q z^{2 i-1}\right)$
(c) $\prod_{i \geq 1}\left(1+z^{i}\right)=\prod_{i \geq 1}\left(1-z^{2 i-1}\right)^{-1}$
4. Let $i_{n}^{(r)}$ be the number of permutations in $S(n)$ with no cycles of length greater than r.
(a) (5%) Prove $i_{n+1}^{(2)}=i_{n}^{(2)}+n i_{n-1}^{(2)}$.
(b) (10%) Prove $i_{n+1}^{(r)}=\sum_{k=n-r+1}^{n} n \frac{n-k}{n} i_{k}^{(r)}$.
5. (10%) A permutation $\sigma \in S(n)$ is called connected if for any $k, 1 \leq k<n$, $\{\sigma(1), \sigma(2), \ldots, \sigma(k)\} \neq[k]$. Find the number of connected permutations in $S(8)$.
6. (10%) Toss a fair coin until you get heads for the n-th time. Let X be the number of throws necessary. What are $P_{X}(z), E(X)$, and $\operatorname{Var}(X)$?
7. (10%) Let a_{n} be the number of ordered set partitions of $\{1, \ldots, n\}$. Compute $\sum_{n \geq 0} a_{n} \frac{z^{n}}{n!}$.
8. (10%) Let S be the family of k-subsets of $\{1,2, \ldots, 2 n\}$. For $A \in S$ let $w(A)=\sum_{i \in A} i$, and set $S^{+}=\{A \in S \mid w(A)$ even $\}, S^{-}=\{A \in S \mid w(A)$ odd $\}$. Find an alternating involution to show that

$$
\left|S^{+}\right|-\left|S^{-}\right|= \begin{cases}0, & k \text { odd } \\ (-1)^{k / 2}\binom{n}{k / 2}, & k \text { even } .\end{cases}
$$

9. (10%) Show that any permutation of $\{1,2, \ldots, m n+1\}$ contains an increasing subword of length $m+1$ or a decreasing subword of length $n+1$.

Combinatorics Qualifying Examination
 NTNU Math Ph.D. Program, Spring 2023

(10 points each)

1. (a) Evaluate

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} 2^{n-k}
$$

(b) Evaluate

$$
\sum_{k=m}^{n}(-1)^{k}\binom{n}{k}\binom{k}{m}
$$

2. It is known there exists a unique sequence a_{n} of real numbers ($n \geq 0$) such that for each n we have

$$
\sum_{k=0}^{n} a_{k} a_{n-k}=1
$$

(a) Find the generating function of a_{n}
(b) Find a_{n}
3. Denote $x^{\underline{n}}=x(x-1) \ldots(x-n+1)$ and $x^{\bar{n}}=x(x+1) \ldots(x+n-1)$. $S_{n, k}$ is the Stirling number of the second kind. $s_{n, k}$ is the (signless) Stirling number of the first kind.
(a) Prove that

$$
x^{n}=\sum_{k=0}^{n} S_{n, k} x^{\underline{k}} .
$$

(b) Prove that

$$
x^{\bar{n}}=\sum_{k=0}^{n} s_{n, k} x^{k} .
$$

4. State and prove the q-binomial theorem.
5. Let V be an n-dimensional vector space over the finite field $G F(q)$, where q is a prime power. Prove that $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ equals the number of k dimensional subspaces of V.
6. Count the number of plane partitions whose number of rows is no greater than 3 , number of columns is no greater than 3 , and height are no greater than 4.
7. Color the vertices of a cube in 3 colors x, y, z. The cube is acted by its symmetries. Two colorings are equivalent if one can be obtained by applying a symmetry. An equivalent class is called a pattern. Compute the generating function of the pattern polynomials for all possible patterns.
8. Let $a \leq b$ are two elements of a poset P. δ is the identity and ζ is the zeta function of the incidence algebra of P. Define $\eta:=\zeta-\delta$.
(a) Show that

$$
\sum_{k \geq 0} \eta^{k}(a, b)=\frac{1}{2 \delta-\zeta}(a, b)
$$

(b) What happens if appy this to the Boolean algebra $\mathbb{B}(n)$?
9. Prove

$$
\prod_{k \geq 1}\left(1-q^{4 k-3}\right)\left(1-q^{4 k-1}\right)\left(1-q^{4 k}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{2 n^{2}+n} .
$$

10. How many rooted forests are there on $\{1, \ldots, n\}$ with k components?

Combinatorics Qualifying Examination

NTNU Math Ph.D. Program, Fall 2023

1. (10%) In a 6×6 grid, how many ways are there to select 30 squares such that there are no consecutive 6 squares in any row, column, or diagonal?
2. (10%) Color the vertices of a floating cube in 3 colors. Compute the generating function of the pattern polynomials for all possible patterns(pattern inventory).
3. (10%) Let a_{n} be the number of n-words over the alphabet $\{0,1,2\}$ that contain no neighboring 0 's, e.g., $a_{1}=3, a_{2}=8, a_{3}=22$. Find the (ordinary) generating function of a_{n}.
4. (10%) Let a_{n} be the number of ordered set partitions of $\{1, \ldots, n\}$. Compute $\sum_{n \geq 0} a_{n} \frac{z^{n}}{n!}$.
5. (10\%) $S_{n, k}$ is the Stirling number of the second kind. Prove that $x^{n}=\sum_{k=0}^{n} S_{n, k} x^{\underline{k}}$.
6. (15%) Prove the following identities:
(a) $\prod_{i \geq 1}\left(1+z^{i}\right)=\prod_{i \geq 1}\left(1-z^{2 i-1}\right)^{-1}$
(b) $\sum_{n \geq 0} \frac{q^{n} z^{n^{2}}}{\left(1-z^{2}\right)\left(1-z^{4}\right) \cdots\left(1-z^{2 n}\right)}=\prod_{i \geq 1}\left(1+q z^{2 i-1}\right)$
(c) $\prod_{i \geq 1}\left(1+z q^{i}\right)\left(1+z^{-1} q^{i-1}\right)\left(1-q^{i}\right)=\sum_{i=-\infty}^{\infty} q^{\frac{i(i+1)}{2}} z^{i}$
7. (10%) Show that any permutation of $\{1,2, \ldots, m n+1\}$ contains an increasing subword of length $m+1$ or a decreasing subword of length $n+1$.
8. (15%)
(a) How many unrooted spanning trees are there in the labeled complete graph K_{n} ?
(b) How many rooted spanning forests with k components are there in the labeled complete graph K_{n} ?
(c) How many unrooted spanning trees are there in the labeled complete bipartite graph $K_{m, n}$?
9. (10%) Let λ be a partition with Ferrers diagram D. For each cell s, a number will be filled in. This number represents the number of ways to go from the lowest cell below s to the cell farthest to the right of s. Let M be the Durfee square of λ (largest square contained in D).
Prove $\operatorname{det} M=1$. Example: $\lambda=43311$, then $\left|\begin{array}{lll}6 & 3 & 1 \\ 3 & 2 & 1 \\ 1 & 1 & 1\end{array}\right|=1$.

