100學年度下學期數學系博士班資格考試 （實變分析）

本試題卷共 2 頁，計 10 題計算證明題，每題 10 分，合計 100 分。
1．Prove the Carathéodory theorem：A set E is measurable if and only if for every set A ，

$$
|A|_{e}=|A \cap E|_{e}+|A \backslash E|_{e} .
$$

（Note：$|A|_{e} \mid$ denotes the outer measure of A ．）
2．Prove that the set of points at which a sequence of measuable real－valued functions con－ verges（to a finite limit）is measurable．

3．Let f be a function which is upper semi－continuous and finite on a compact set E ．Show that if f is bounded above on E ．Show also that f assumes its maximum on E ，that is， that there exists $x_{0} \in E$ such that $f\left(x_{0}\right) \geq f(x)$ for all $x \in E$ ．

4．Let $f \in L(0,1)$ ．Show that $x^{k} f(x) \in L(0,1)$ for $k=1,2, \ldots$ ，and $\int_{0}^{1} x^{k} f(x) \mathrm{d} x \rightarrow 0$ as $k \rightarrow \infty$ ．

5．Let E be a measurable subset of \mathbb{R}^{2} such that for almost every $x \in \mathbb{R}^{1},\{y \mid(x, y) \in E\}$ has \mathbb{R}^{1}－measure zero．Show that E has measure zero，and the for almost every $y \in \mathbb{R}^{1}$ ， $\{x \mid(x, y) \in E\}$ has measure zero．

6．（a）Write out the definition of the essential supremum $\|f\|_{\infty}$ of a real－valued measurable function f on a measurable set E ．
（b）Let f be a real－valued measurable function on $[0,1]$ ．Prove that $\lim _{p \rightarrow \infty}\|f\|_{p}=\|f\|_{\infty}$ ．
7．Let E be a measurable set in \mathbb{R}^{n} ，and $0<p<q \leq \infty$ ．
（a）Prove that $L^{p}(E) \cap L^{\infty}(E) \subset L^{q}(E)$ ．
（b）Prove that if $|E|<\infty$ ，then $L^{q}(E) \subset L^{p}(E)$ ．
8．Let $f, g \in L^{2}\left(\mathbb{R}^{n}\right)$ ．Prove that $f+g \in L^{2}\left(\mathbb{R}^{n}\right)$ and $\|f+g\|_{2} \leq\|f\|_{2}+\|g\|_{2}$ ．

9．Let $\left\{\varphi_{k}\right\}$ be an orthonormal system in $L^{2}[0,1]$ ，and $\left\{c_{k}\right\}$ be the Fourier series of a function $f \in L^{2}[0,1]$ with respect to the system $\left\{\varphi_{k}\right\}$.
（a）Prove that the Bessel＇s inequality $\left(\sum_{k=1}^{\infty}\left|c_{k}\right|^{2}\right)^{1 / 2} \leq\|f\|_{2}$ holds．
（b）Find a necessary and sufficient condition so that the Parseval＇s identity $\left(\sum_{k=1}^{\infty}\left|c_{k}\right|^{2}\right)^{1 / 2}=$ $\|f\|_{2}$ holds，and prove your answer．

10．Let $C[0,1]$ denote the set of all real－valued continuous functions on $[0,1]$ ，and the linear operator $T: C[0,1] \rightarrow \mathbb{R}$ be defined by $T(f)=f(1)$ for all $f \in C[0,1]$ ．
（a）Prove that T is a continuous linear functional on $C[0,1]$ ．
（b）Prove that there exists an extension $T^{*}: L^{\infty}[0,1] \rightarrow \mathbb{R}^{n}$ of T such that T^{*} is a contin－ uous linear functional on $L^{\infty}[0,1]$ ，but there is no $g \in L^{1}[0,1]$ satisfying

$$
T^{*}(f)=\int_{[0,1]}(f \times g) \mathrm{d} x \quad \text { for all } f \in C[0,1]
$$

（試題結束）

101學年度上學期數學系博士班資格考試
 （實變分析）

本試题卷共 2 頁，計 10 题計算證明題，每題 10 分，合計 100 分。

1．Let E be a measurable subset of \mathbb{R} ，with $|E|>0$ ．Prove that there exists a positive real number ε such that $(-\varepsilon, \varepsilon) \subset E-E$ ，where

$$
E-E=\{x-y \mid x, y \in E\}
$$

2．Prove or disprove：
（a）Any function $f:[a, b] \rightarrow \mathbb{R}$ of bounded variation is measurable．
（b）Any upper semicontinuous function $f:[a, b] \rightarrow \mathbb{R}$ is measurable．
3．Let E be a measurable set in \mathbb{R}^{n} of finite measure．Prove that $f: E \rightarrow \mathbb{R}$ is measurable if and only if for any $\varepsilon>0$ ，there exists a closed subset F of E such that $|E \backslash F|<\varepsilon$ ，and f is continuous on F ．

4．（a）State without proof the Egorov＇s theorem．
（b）Let $\left\langle f_{k}\right\rangle$ be a sequence of measurable functions on a measurable set E with $|E|<\infty$ ． If f_{k} converges to f a．e．in E ，and $\sup _{k}\left|f_{k}-f\right| \in L(E)$ ，prove that $\lim _{k \rightarrow \infty} \int_{E} f_{k}=\int_{E} f$ ．

5．Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ satisfy for each $x \in[0,1], f(x, y)$ is a Lebesgue integrable func－ tion of y ，and $\frac{\partial f(x, y)}{\partial x}$ is a bounded function of (x, y) ．Prove that $\frac{\partial f(x, y)}{\partial x}$ is a measurable function of y for each $x \in[0,1]$ ，and

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \int_{[0,1]} f(x, y) \mathrm{d} y=\int_{[0,1]} \frac{\partial f(x, y)}{\partial x} \mathrm{~d} y .
$$

6．（a）State the definition for a finite function f on a finite interval $[a, b]$ to be absolutely continuous．
（b）Show that the function $f(x)=x^{\alpha}$ is absolutely continuous on every bounded subin－ terval of $[0, \infty)$ whenever $\alpha>0$ ．

7．Let $a_{1}, a_{2}, \ldots, a_{N}$ be non－negative real numbers，$p_{1}, p_{2}, \ldots, p_{N}$ be positive real numbers with $\sum_{j=1}^{N}\left(1 / p_{j}\right)=1$ ．Show that

$$
\prod_{j=1}^{N} a_{j} \leq \sum_{j=1}^{N} \frac{a_{j}}{p_{j}}
$$

8．Let ℓ^{∞} denote the normed linear space of all bounded real sequences．Is ℓ^{∞} separable？ Justify your answer．

9．Suppose that $f_{k}, f \in L^{2}$ ，and that $\int f_{k} g \rightarrow \int f g$ for all $g \in L^{2}$ ．If $\left\|f_{k}\right\|_{2} \rightarrow\|f\|_{2}$ ，show that $f_{k} \rightarrow f$ in L^{2} norm．

10．Let Σ be a σ－algebra on a set $\mathscr{S},\left\{E_{k}\right\}$ be any sequence of sets in Σ ，and ϕ be a non－ negative additive set function on Σ ．Prove that

$$
\phi\left(\liminf _{k \rightarrow \infty} E_{k}\right) \leq \liminf _{k \rightarrow \infty} \phi\left(E_{k}\right) .
$$

（試題結束）

103 學年度數學系博士班資格考試 （實變分析）

※ 本試題卷共 8 題證明題

1．（a）Prove that every Borel measurable subset in \mathbb{R}^{n} is Lebesgue measurable．
（b）Prove that there is a Lebesgue measurable subset in \mathbb{R}^{n} is not Borel measurable．

2．Prove or disprove（Please explain your answer）：
（a）If $f:[a, b] \rightarrow \mathbb{R}$ is a function of bounded variation，then f is Lebesgue measurable．
（b）If E is a Lebesgue measurable subset of \mathbb{R} ，with $|E|>0$ ，then there exist $x, y \in E$ with $x \neq y$ such that $x-y$ is a rational number．
（c）If for each rational number a ，the set $\left\{x \in \mathbb{R}^{n} \mid f(x)>a\right\}$ is Lebesgue measurable， then $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Lebesgue measurable．
（d）There exists a Riemann integrable function $f:[0,1] \rightarrow[0,1]$ such that f is continuous at each rational point and discontinuous at each irrational point of［0，1］．
（e）If f is Lebesgue integrable over E ，then f is finite a．e．in E ．

3．Prove that if $f:[a, b] \rightarrow \mathbb{R}$ is a function of bounded variation，then f can be written as $f=g+h$ ，where g is absolutely continuous and h is singular，which are unique up to additive constants．

4．Prove that if $f \in L^{p}(E)$ and $f \geq 0$ ，then $\int_{E} f^{p}=p \int_{0}^{\infty} \alpha^{p-1} \omega(\alpha) d \alpha$ ，where ω is the distribution function of f ，defined by $\omega(\alpha)=|\{x \in E \mid f(x)>\alpha\}|$ ．

5．Prove that if $f \in L^{p}(\mathbb{R})$ ，where $1 \leq p<\infty$ ，then for every $\varepsilon>0$ there is a continuous function g with compact support such that $\|f-g\|_{p}<\varepsilon$ ．

6．Prove that if $f \in L\left(\mathbb{R}^{n}\right)$ ，then the definite integral $F(E)=\int_{E} f(x) d x$ is absolutely continuous with respect to Lebesgue measure．
7. For $f, g \in L\left(\mathbb{R}^{n}\right)$, we define the convolution of f and g by

$$
(f * g)(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y \text { for } x \in \mathbb{R}^{n}
$$

Prove that $f * g \in L\left(R^{n}\right)$, and $\|f * g\|_{1} \leq\|f\|_{1} \cdot\|g\|_{1}$.
8. Let $\left\{\varphi_{k}\right\}$ be an orthonormal system in $L^{2}[0,1]$, and $\left\{c_{k}\right\}$ be a sequence in $\ell^{2}(R)$. Prove that there exists $f \in L^{2}[0,1]$ such that $\sum_{k=1}^{\infty} c_{k} \varphi_{k}(x)$ is the Fourier series of f with respect to the orthonormal system $\left\{\varphi_{k}\right\}$.

103 學年度數學系博士班資格考試
 （實變分析）
 2015．4． 30

※ 本試题卷共 8 题計算證明題

1．（a）Prove that if every measurable set E in \mathbb{R}^{n} can be expressed as $E=F \cup Z$ ， where F is a closed set and $|Z|=0$ ．
（b）Let E_{1} and E_{2} be measurable subsets of \mathbb{R}^{n} ．Prove that the product set $E_{1} \times E_{2}$ is a measurable subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$ ，and $\left|E_{1} \times E_{2}\right|=\left|E_{1}\right| \cdot\left|E_{2}\right|$.

2．Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be measurable．Prove that the function $g: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $g(x, y)=f(x-y)$ is also measurable on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ ．
Hint ：Show that there exists an invertible (2×2) matrix A such that

$$
\{(x, y) \mid g(x, y)>a\}=A\left(\mathbb{R}^{n} \times\{z \mid f(z)>a\}\right) \text { for all } a \in \mathbb{R} .
$$

3．Prove or disprove（Please explain your answer）：
（a）There exists a Riemann integrable function $f:[0,1] \rightarrow[0,1]$ such that f is continuous at each rational point and discontinuous at each irrational point of $[0,1]$ ．
（b）There exists an increasing continuous function f whose derivative f^{\prime} is Lebesgue integrable on $[0,1]$ such that $\int_{[0,1]} f^{\prime} \neq f(1)-f(0)$ ．

4．（a）Prove carefully that for $0<a<b<\infty, \int_{[0, \infty)} \int_{[a, b]} e^{-x y} \sin x d x d y=\int_{[a, b]} \frac{\sin x}{x} d x$ ．
（b）Evaluate the Lebesgue integral $\int_{(0, \infty)} \frac{\sin x}{x} d x$ ．

5．Let $f:[0,1] \rightarrow \mathbb{R}$ be measurable．Prove that if $g(x, y)=f(x)-f(y)$ is Lebesgue integrable over $[0,1] \times[0,1]$ ，then f is Lebesgue integrable on $[0,1]$ ．
6. Let $f_{k}: E \rightarrow \mathbb{R}$ be a sequence of measurable functions on E, where E is a measurable subset of \mathbb{R}^{n}, and $1 \leq p<\infty$.
(a) State the definition that $\left\langle f_{k}\right\rangle$ converges to f in measure.
(b) State the definition that $\left\langle f_{k}\right\rangle$ converges to f in L^{p}.
(c) Prove that if $\left\langle f_{k}\right\rangle$ converges to f in L^{p}, then it converges to f in measure.
7. (a) State without proof Holder inequality.
(b) Let E be a measurable subset of \mathbb{R}^{n}, with $|E| \leq 1$, and $1 \leq p<q<\infty$. Prove that for any measurable function $f: E \rightarrow \mathbb{R},\|f\|_{p} \leq\|f\|_{q}$.
8. (a) Let $f \in L^{2}(0,1)$. Prove that $\lim _{k \rightarrow \infty} \int_{0}^{2 \pi} f(x) \cos k x d x=\lim _{k \rightarrow \infty} \int_{0}^{2 \pi} f(x) \sin k x d x=0$. (b) Is (a) still true if $f \in L^{1}(0,1)$? Why?

104學年度數學系博士班資格考試
 （實 變 分 析）

2015．10． 30
※ 本試題卷共六大題（第一大題 50 分，其餘各題每題 10 分）

1．Prove or disprove ：（Please explain your answer）
（1）There is a Lebesgue measurable subset in \mathbb{R}^{n} ，which is not Borel measurable．
（2）Any function f of bounded variation on $[a, b]$ is Riemann integrable ．
（3）There is a subset E of \mathbb{R} ，with $|E|_{e}>0$ ，satisfying for any $x, y \in E$ with $x \neq y$ ， $x-y$ is not a rational number．
（4）There is a sequence $\left\{E_{k}\right\}$ of disjoint sets such that $\left|\bigcup_{k=1}^{\infty} E_{k}\right|_{e}<\sum_{k=1}^{\infty}\left|E_{k}\right|_{e}$ ．
（5）If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is Lebesgue measurable，then the function $g: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $g(x, y)=f(x-y)$ is also Lebesgue measurable on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ ．
（6）Every Riemann integrable function $f:[0,1] \rightarrow \mathbb{R}$ is Lebesgue integrable．
（7）If f is Lebesgue integrable over E ，then f is finite a．e．in E ．
（8）If $1 \leq p<q<\infty$ ，then $L^{q}[0,1] \subset L^{p}[0,1]$ ．
（9）There exists an increasing continuous function f whose derivative f^{\prime} is Lebesgue integrable on $[0,1]$ such that $\int_{[0,1]} f^{\prime} \neq f(1)-f(0)$ ．
（10）Any function f of bounded variation on $[a, b]$ can be written as $f=g+h$ ，where g is absolutely continuous and h is singular．

2．Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an affine function defined by $T(x)=A x+u$ ，where A is an $n \times n$ matrix，and u is a fixed vector in \mathbb{R}^{n} ．Prove that for any Lebesgue measurable set E of $\mathbb{R}^{n},|T(E)|=|\operatorname{det} A||E|$.

3．Let $f: E \rightarrow \mathbb{R}$ be a Lebesgue measurable function，where E is a Lebesgue measurable
subset of \mathbb{R}^{n} with $|E|<\infty$. Prove that there exists a sequence $\left\langle f_{k}\right\rangle$ of simple measurable functions on E such that $\left\langle f_{k}\right\rangle$ converges almost uniformly to f in the following sense: for all $\varepsilon>0$, there exists a closed subset F of E with $|E \backslash F|<\varepsilon$, such that $\left\langle f_{k}\right\rangle$ converges uniformly to f on F. (Hint: You can apply Egorov Theorem)
4. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ satisfy for each $x \in[0,1], f(x, y)$ is a Lebesgue integrable function of y, and $\frac{\partial f(x, y)}{\partial x}$ is a bounded function of (x, y). Prove that $\frac{\partial f(x, y)}{\partial x}$ is a Lebesgue measurable function of y for each $x \in[0,1]$, and

$$
\frac{d}{d x} \int_{[0,1]} f(x, y) d y=\int_{[0,1]} \frac{\partial f(x, y)}{\partial x} d y
$$

5. Let f be nonnegative and Lebesgue measurable on a Lebesgue measurable subset E of \mathbb{R}^{n}. Prove that

$$
\int_{E} f=\sup \sum_{j}\left[\inf _{x \in E_{j}} f(x)\right]\left|E_{j}\right|
$$

where the supremum is taken over all decompositions $E=\bigcup_{j} E_{j}$ of E into the union of a finite number of disjoint Lebesgue measurable sets E_{j}.
6. Let $\left\{\varphi_{k}\right\}$ be an orthonormal system in $L^{2}[0,1]$, and $\left\{c_{k}\right\}$ be a sequence in $\ell^{2}(\mathbb{R})$. Prove that there exists $f \in L^{2}[0,1]$ such that $\sum_{k=1}^{\infty} c_{k} \varphi_{k}(x)$ is the Fourier series of f with respect to the orthonormal system $\left\{\varphi_{k}\right\}$.

105 學年度數學系博士班資格考試
 （Real Analysis Qualifying Exam）

2016．10．31

1．Let E, F be measurable sets in \mathbb{R}^{n}, B be a Borel set in $[0, \infty)$ ，and $f: E \rightarrow[0, \infty)$ be a measurable function．Prove that the following 4 sets are measurable：

$$
E \cup F, E \times F, f^{-1}\{B\}, \text { and } R(f, E)=\{(x, y) \mid x \in E, 0 \leq y \leq f(x)\} .
$$

2．（a）Use Caratheodory theorem to show that if E is a subset of \mathbb{R}^{n} satisfying the condition $|G|=|G \cap E|_{e}+\left|G \cap E^{C}\right|_{e}$ for all open sets G in \mathbb{R}^{n} ，then E is measurable．
（b）If the condition in（a）is changed to $|F|=|F \cap E|_{e}+\left|F \cap E^{C}\right|_{e}$ for all closed sets F in \mathbb{R}^{n} ，is E measurable？Why？

3．Prove that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a measurable function，then the function $g: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ ， defined by $g(x, y)=f(2 x-3 y)$ ，is also measurable on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ ．
（Hint：Find an invertible（ 2×2 ）matrix A such that

$$
\left.\{(x, y) \mid g(x, y)>a\}=A\left(\mathbb{R}^{n} \times\{z \mid f(z)>a\}\right) \text { for every } a \in \mathbb{R} .\right)
$$

4．Let $\left\langle f_{k}\right\rangle$ be a sequence of measurable functions on a measurable set E of \mathbb{R}^{n} ．
（a）Use monotone convergence theorem to show that $\int_{E} \sum_{k=1}^{\infty}\left|f_{k}\right|=\sum_{k=1}^{\infty} \int_{E}\left|f_{k}\right|$ ．
（b）Prove that if the series $\sum_{k=1}^{\infty} \int_{E}\left|f_{k}\right|$ converges，then $\sum_{k=1}^{\infty} f_{k}$ converges absolutely a．e．in

$$
E \text {, and } \sum_{k=1}^{\infty} \int_{E} f_{k}=\int_{E} \sum_{k=1}^{\infty} f_{k} \text {. }
$$

5．（a）Prove that if $f \in L(E)$ ，then for all $\varepsilon>0$ ，there is $\delta>0$ such that $\int_{A}|f|<\varepsilon$ for all measurable subsets A of E with $|A|<\delta$ ．
（b）Use Egoroff theorem to show that if $\left\langle f_{k}\right\rangle$ is a sequence of measurable functions that converges to f a．e．in E ，with $|E|<\infty$ ，and $\sup _{k}\left|f_{k}-f\right| \in L(E)$ ，then $\lim _{k \rightarrow \infty} \int_{E} f_{k}=\int_{E} f$ ．
（c）Use Tonelli theorem to show that if $f, g \in L\left(\mathbb{R}^{n}\right)$ ，then $\int_{\mathbb{R}^{n}}|f(x-y) \times g(y)| d y<\infty$ for a．e．$x \in \mathbb{R}^{n}$ ．
6. Let $\left\{\varphi_{k}\right\}$ be an orthonormal system in $L^{2}[0,1]$. Prove that $\left\{\varphi_{k}\right\}$ is complete if, and only if, Parseval's formula $\|f\|=\left(\sum_{k=1}^{\infty}\left|c_{k}\right|^{2}\right)^{1 / 2}$ holds for every $f \in L^{2}[0,1]$, where the numbers c_{k} are the Fourier coefficients of f with respect to the system $\left\{\varphi_{k}\right\}$.
7. Use Radon-Nikodym theorem to show that for any continuous linear functional T on $L^{2}[0,1]$, there exists a unique function $g \in L^{2}[0,1]$ such that $T(f)=\int_{[0,1]} f \times g$ for every $f \in L^{2}[0,1]$.

106 學年度數學系博士班資格考試
 （Real Analysis Qualifying Exam）
 ＊＊＊Each problem is worth 10 points．$\%$＊＊

2017．10．31

1．Determine which function is Riemann（improper）integrable on E ？Lebeague integrable on E ？Explain your answer．

$$
f(x)=\left\{\begin{array}{ll}
1, & \text { if } x \in[0,1] \cap \mathbb{Q} \\
x, & \text { if } x \in[0,1] \cap \mathbb{Q}^{C}
\end{array} \text { on } E=[0,1] \text { and } g(x)=\frac{\sin x}{x} \text { on } E=[1, \infty) .\right.
$$

2．Prove that（Caratheodory Theorem）a subset E in \mathbb{R}^{n} is measurable if and only if for every set A in $\mathbb{R}^{n},|A|_{e}=|A \cap E|_{e}+|A \backslash E|_{e}$ ．
3．Construct a sequence of disjoint sets $E_{1}, E_{2}, E_{3}, \cdots$ in \mathbb{R} such that $\left.\bigcup_{k=1}^{\infty} E_{k}\right|_{e} \neq \sum_{k=1}^{\infty}\left|E_{k}\right|_{e}$ ．
4．Prove that there exists a Lebesgue measurable set in \mathbb{R} ，which is not a Borel set．
5．Prove that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is measurable，then the function $g: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ ，defined by $g(x, y)=f(x+2 y)$ ，is also measurable on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ ．

6．Let $\left\langle f_{k}\right\rangle$ be a sequence of measurable functions on a measurable set E of \mathbb{R}^{n} ．Prove that if the series $\sum_{k=1}^{\infty} \int_{E}\left|f_{k}\right|$ converges，then $\sum_{k=1}^{\infty} f_{k}$ converges absolutely a．e．in E ，and $\sum_{k=1}^{\infty} \int_{E} f_{k}=\int_{E} \sum_{k=1}^{\infty} f_{k}$.
7．Suppose that $f \in L(\mathbb{R})$ and $\iint_{\mathbb{R}^{2}} f(3 x) f(x+2 y) d x d y=1$ ，calculate $\int_{\mathbb{R}} f(x) d x$ ．
8．（a）Prove that if $f:[a, b] \rightarrow \mathbb{R}$ is bounded，Lebesgue integrable，and $F(x)=\int_{[a, x]} f$ ， then F is absolutely continuous，and $F^{\prime}=f$ a．e．in $[a, b]$ ．
（b）Is（a）still true，if f is unbounded？Why？
9．Let $f \in L^{p}\left(\mathbb{R}^{n}\right), 1<p, q<\infty$ ，and $\frac{1}{p}+\frac{1}{q}=1$ ．Prove that $\|f\|_{p}=\sup _{\|g\|_{q} \leq 1}\left|\int_{\mathbb{R}^{n}} f(x) \times g(x) d x\right|$ ．
10．（a）Let $f \in L^{2}(0,2 \pi)$ ．Prove that $\lim _{k \rightarrow \infty} \int_{0}^{2 \pi} f(x) \cos k x d x=\lim _{k \rightarrow \infty} \int_{0}^{2 \pi} f(x) \sin k x d x=0$ ．
（b）Is（a）still true，if $f \in L^{1}(0,2 \pi)$ ？Why？

108 學年度數學系博士班資格考試（實變分析）

Real Analysis Qualifying Exam

2019．10．31

1．It is known from Caratheodory theorem that a subset E of \mathbb{R}^{n} is measurable if and only if $|A|=|A \cap E|_{e}+|A \backslash E|_{e}$ for all sets A in \mathbb{R}^{n} ．Prove or disprove ：
（a）If $|G|=|G \cap E|_{e}+|G \backslash E|_{e}$ for all open sets G in \mathbb{R}^{n} ，then E is measurable．
（b）If $|F|=|F \cap E|_{e}+|F \backslash E|_{e}$ for all closed sets F in \mathbb{R}^{n} ，then E is measurable．

2．（a）Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function and B denote the Borel σ－algebra in \mathbb{R} ． Prove that the family $\Gamma=\left\{E \subset \mathbb{R} \mid f^{-1}(E)\right.$ is measurable $\}$ is a σ－algebra containing B ．
（b）Prove that there exists a measurable subset of $[0,1]$ ，but not a Borel set．

3．（a）Prove that every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ maps measurable subsets of \mathbb{R}^{n} into measurable sets．
（b）Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a measurable function，and $a, b \in \mathbb{R}$ ．Prove that the function $g: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ ，defined by $g(x, y)=f(a x+b y)$ ，is also measurable on $\mathbb{R}^{n} \times \mathbb{R}^{n}$.

4．Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a measurable function satisfying $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$ ，then f must be linear．

5．（a）Prove that if $f \in L(E)$ ，then f is finite a．e．in E ．
（b）Suppose that $\left\langle f_{k}\right\rangle$ is a sequence of measurable functions on a measurable subset E of \mathbb{R}^{n} ，and $\sum_{k=1}^{\infty} \int_{E}\left|f_{k}\right|$ converges．Prove that $\sum_{k=1}^{\infty} f_{k}$ converges absolutely a．e．in E, and $\sum_{k=1}^{\infty} \int_{E} f_{k}=\int_{E} \sum_{k=1}^{\infty} f_{k}$ ．

6．Let $\left\langle f_{k}\right\rangle$ be a sequence of measurable functions on a measurable subset E of \mathbb{R}^{n} ，with $|E|<\infty$ ，and $\left|f_{k}(x)\right| \leq M_{x}<\infty$ for all k and for each $x \in E$ ．Prove that for all $\varepsilon>0$ ，there is a closed subset F of E and a positive number M such that $|E \backslash F|<\varepsilon$ and $\left|f_{k}(x)\right| \leq M$ for all k and for all $x \in F . \quad$（Hint ：You can apply Lusin theorem）
7. Use Tonelli theorem to show that if $f: E \rightarrow[0, \infty)$ is a measurable function on a measurable subset E of \mathbb{R}^{n}, and $\omega(\alpha)=|\{x \in E \mid f(x)>\alpha\}|$, then $\int_{E} f=\int_{0}^{\infty} \omega(\alpha) d \alpha$.
(Hint : $\int_{E} f=\iint_{R(f, E)} 1 d x d y$, where $R(f, E)=\{(x, y) \mid x \in E, 0 \leq f(x) \leq y\}$.)
8. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a measurable function. Prove that if the iterated integral $\int_{[0,1]} \int_{[0,1]}|f(x, y)| d x d y$ exists and is finite, then $f \in L([0,1] \times[0,1])$, and

$$
\iint_{[0,1] \times[0,1]} f=\int_{[0,1]} \int_{[0,1]} f(x, y) d x d y=\int_{[0,1]} \int_{[0,1]} f(x, y) d y d x
$$

9. Let $\left\{\varphi_{k}\right\}$ be any orthonormal basis for $L^{2}(E)$ over \mathbb{R}.
(a) Prove that $\left\{\varphi_{k}\right\}$ must be countable and complete.
(b) Prove that any function $f \in L^{2}(E)$ satisfies Parseval formula with respect to $\left\{\varphi_{k}\right\}$; that is, $\|f\|_{2}=\left(\sum_{k=1}^{\infty}\left|c_{k}\right|^{2}\right)^{\frac{1}{2}}$, where $\left\{c_{k}\right\}$ is the sequence of Fourier coefficients of f.

109 學年度數學系博士班資格考試（實變分析）

Real Analysis Qualifying Exam
2021．4．28

1．Let $f(x)=\left\{\begin{array}{ll}0, & \text { if } x \in[0,1] \\ 1, & \text { if } x \in(1,2]\end{array}, \alpha(x)=\left\{\begin{array}{ll}0, & \text { if } x \in[0,1) \\ 1, & \text { if } x \in[1,2]\end{array}\right.\right.$, and $\beta(x)= \begin{cases}x, & \text { if } x \in[0,1) \\ x^{2}, & \text { if } x \in[1,2]\end{cases}$
（a）Is f Riemann－Stieltjes integrable to α on $[0,2]$ ？Why？
（b）Is f Riemann－Stieltjes integrable to β on $[0,2]$ ？Why？

2．（a）Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a measurable function and B be a Borel set in \mathbb{R} ．Prove that $f^{-1}(B)$ is measurable in $[0,1] \times[0,1]$ ．
（b）Let f and g be measurable on $[0,1]$ ．Prove that the function $F:[0,1] \times[0,1] \rightarrow \mathbb{R}$ ， defined by $F(x, y)=f(x) \times g(y)$ ，is measurable on $[0,1] \times[0,1]$.

3．Let $f: E \rightarrow \mathbb{R}$ be a measurable function on a measurable subset E of \mathbb{R}^{n} ．Prove that for all $\varepsilon>0$ ，there is a Borel set B in E ，with $|E \backslash B|<\varepsilon$ ，and a sequence $\left\langle f_{k}\right\rangle$ of Borel measurable functions such that $\left\langle f_{k}(x)\right\rangle$ converges increasingly to $|f(x)|$ for all $x \in B$ ．

4．Let $\left\langle f_{k}\right\rangle$ be a sequence of measurable functions on a measurable subset E of \mathbb{R}^{n} ，and $\sum_{k=1}^{\infty} \int_{E}\left|f_{k}\right|$ converges．Prove that $\sum_{k=1}^{\infty}\left|f_{k}\right|$ converges a．e．in E ，and $\sum_{k=1}^{\infty} \int_{E} f_{k}=\int_{E} \sum_{k=1}^{\infty} f_{k}$.

5．Let $\left\langle f_{k}\right\rangle$ be a sequence of increasing functions on $[a, b]$ ，and $\sum_{k=1}^{\infty} f_{k}(x)$ converge to $f(x)$ for each $x \in[a, b]$ ．Prove that $\sum_{k=1}^{\infty} f_{k}^{\prime}(x)$ converges to $f^{\prime}(x)$ for a．e．x in E ．
6. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ satisfy that for each $x \in[0,1], f(x, y)$ is a Lebesgue integrable function of y, and $\frac{\partial f(x, y)}{\partial x}$ is a bounded function of (x, y). Prove that $\frac{\partial f(x, y)}{\partial x}$ is a measurable function of y for each $x \in[0,1]$, and

$$
\frac{d}{d x} \int_{[0,1]} f(x, y) d y=\int_{[0,1]} \frac{\partial f(x, y)}{\partial x} d y
$$

7. Let E be a measurable subset of \mathbb{R}^{n}. Prove that $f: E \rightarrow \mathbb{R}$ is measurable if and only If the region $R(f, E)$ is measurable, where $R(f, E)=\{(x, y) \mid x \in E, 0 \leq f(x) \leq y\}$.
8. (a) Let f be measurable on E, and $1<p<q<\infty$, with $\frac{1}{p}+\frac{1}{q}=1$. Prove that

$$
\int_{E}|f g| \leq\left(\int_{E}|f|^{p}\right)^{\frac{1}{p}}\left(\int_{E}|f|^{q}\right)^{\frac{1}{q}}
$$

(b) Let f be measurable on E with $0<|E|<\infty$, and $1 \leq p<q<\infty$. Prove that

$$
\left(\frac{1}{|E|} \int_{E}|f|^{p}\right)^{\frac{1}{p}} \leq\left(\frac{1}{|E|} \int_{E}|f|^{q}\right)^{\frac{1}{q}} .
$$

9. Define the operator $T: C[0,1] \rightarrow \mathbb{R}$ by $T(f)=f(1)$ for all $f \in C[0,1]$, where $C[0,1]$ denotes the Banach space of all real-valued continuous functions on $[0,1]$.
(a) Prove that T is a continuous linear functional on $C[0,1]$.
(b) Prove that there exists a continuous linear functional $T^{*}: L^{\infty}[0,1] \rightarrow \mathbb{R}$ such that $T^{*}(f)=T(f)$ for all $f \in C[0,1]$, but there exists no function $g \in L^{1}[0,1]$ satisfying $T^{*}(f)=\int_{[0,1]}(f \times g) d x$ for all $f \in C[0,1]$.

Real Analysis Qualifying Exam
Fall 112.
English Name: \qquad
Chinese Name: \qquad

Grading. The exam is out of 100 pts. As written below, Problems 1, 2, 6, 7, 8 are worth 12 pts; Problems 4, 5 are worth 13 pts; Problem 3 is worth 14 pts.

Preliminaries. Throughout this exam, we suppose X is a set, \mathcal{B} is a σ-algebra of subsets of X, elements of which we call measurable, and $\mu: \mathcal{B} \rightarrow[0, \infty]$ is a measure:
i

$$
\mu(\emptyset)=0 ;
$$

ii

$$
\mu\left(\bigcup_{n=0}^{\infty} E_{n}\right)=\sum_{n=0}^{\infty} \mu\left(E_{n}\right) \quad E_{n} \in \mathcal{B} \text { for all } n, E_{n} \cap E_{m}=\emptyset \text { if } m \neq n
$$

Further suppose $X=\cup_{n} X_{n}$ with $\mu\left(X_{n}\right)<+\infty$. We say that a function $f: X \rightarrow$ $[-\infty, \infty]$ is measurable if $\{x: f(x)>\alpha\} \in \mathcal{B}$ for each $\alpha \in \mathbb{R}$. For a measurable function $f: X \rightarrow[0, \infty]$ define

$$
\int_{X} f d \mu:=\sup _{g \leq f} \int_{X} g d \mu
$$

where the supremum is taken over all non-negative simple functions.

1 (12 pts). Suppose that $f: X \rightarrow \mathbb{R}$ is a measurable function such that

$$
\int_{X}|f| d \mu<+\infty
$$

Show that for every $\epsilon>0$, there exists $\delta>0$ such that if A is a measurable set with $\mu(A)<\delta$ then

$$
\begin{equation*}
\int_{A}|f| d \mu<\epsilon . \tag{1}
\end{equation*}
$$

$2(12 \mathrm{pts})$. Show that if $\left\{A_{n}\right\}$ is a sequence of measurable sets with $A_{n+1} \subset A_{n}$ and $\mu\left(A_{1}\right)<+\infty$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\mu\left(\cap_{n=0}^{\infty} A_{n}\right) \tag{2}
\end{equation*}
$$

3 (14 pts). Show that if

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

exists for every $x \in X$, then

$$
\begin{equation*}
\int_{X} f d \mu \leq \liminf _{n \rightarrow \infty} \int_{X} f_{n} d \mu . \tag{3}
\end{equation*}
$$

(If you utilize Egorov's theorem, monotone convergence theorem, dominated convergence theorem, etc. in your proof you should prove them first.)

4 (13 pts). In this problem, let $X=\mathbb{R}^{n}$ and suppose μ is a Radon measure, i.e. finite on compact sets and for each measurable set satisfies

$$
\mu(E)=\sup _{K \subset E} \mu(K)=\inf _{U \supset E} \mu(U)
$$

where K are assumed to be compact and U open. Show that if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is integrable then there exists a sequence of continuous functions φ_{n} such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{n}}\left|\varphi_{n}-f\right| d x=0 \tag{4}
\end{equation*}
$$

5 (13 pts). In this problem, let $X=\mathbb{R}^{n}$ and suppose μ is a Radon measure, i.e. finite on compact sets and for each measurable set satisfies

$$
\mu(E)=\sup _{K \subset E} \mu(K)=\inf _{U \supset E} \mu(U)
$$

where K are assumed to be compact and U open. Define the Hardy-Littlewood maximal function of a measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is integrable on compact subsets by

$$
\mathcal{M}(f)(x):=\sup _{r>0} \frac{1}{\mu(B(x, r))} \int_{B(x, r)}|f(y)| d \mu
$$

Suppose for the given μ that one has shown the weak-type estimate

$$
\mu\left(\left\{x \in \mathbb{R}^{n}: \mathcal{M}(f)(x)>t\right\}\right) \leq \frac{C}{t} \int_{\mathbb{R}^{n}}|f| d \mu
$$

Use this estimate and the properties of μ to show that

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{1}{\mu(B(x, r))} \int_{B(x, r)} f(y) d \mu=f(x) \tag{5}
\end{equation*}
$$

for μ almost every $x \in \mathbb{R}^{n}$. (You may assume that the conclusion of Problem 4 is valid.)
$6(12 \mathrm{pts})$. In this problem, let $X=[0,1], \mathcal{B}=\mathcal{M}$ be the σ-algebra of Lebesgue measurable subsets of $[0,1]$ and μ be the Lebesgue measure. Suppose that $f_{n}, f \in L^{2}([0,1])$,

$$
\lim _{n \rightarrow \infty} \int_{[0,1]} f_{n} g d x=\int_{[0,1]} f g d x
$$

for every $g \in L^{2}([0,1])$ and that

$$
\lim _{n \rightarrow \infty} \int_{[0,1]}\left|f_{n}\right|^{2} d x=\int_{[0,1]}|f|^{2} d x
$$

Show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{[0,1]}\left|f_{n}-f\right|^{2} d x=0 \tag{6}
\end{equation*}
$$

7 (12 pts). In this problem, let $X=[0,1], \mathcal{B}=\mathcal{M}$ be the σ-algebra of Lebesgue measurable subsets of $[0,1]$ and μ be the Lebesgue measure. Suppose that $f_{n}, f \in L^{2}([0,1])$ and

$$
\lim _{n \rightarrow \infty} \int_{[0,1]}\left|f_{n}-f\right|^{2} d x=0
$$

Show that there exists a subsequence $\left\{f_{n_{k}}\right\}$ such that

$$
\begin{equation*}
f(x)=\lim _{k \rightarrow \infty} f_{n_{k}}(x) \tag{7}
\end{equation*}
$$

for Lebesgue almost every $x \in[0,1]$.
$8(12 \mathrm{pts})$. Let ν be another measure on the measurable space (X, \mathcal{B}) for which $X=$ $\cup_{n} X_{n}^{\prime}$ with $\nu\left(X_{n}^{\prime}\right)<+\infty$. State the Radon-Nikodym theorem and the Lebesgue decomposition theorem for the measures μ, ν, introducing suitable hypothesis when necessary.

Real Analysis Qualifying Exam
Fall 112.
English Name: \qquad
Chinese Name: \qquad

Grading. The exam is out of 100 pts. All problems are worth 20 pts.

1 (20 pts) Let $L^{p}([0,1])$ denote the vector space of Lebesgue measurable functions f : $[0,1] \rightarrow \mathbb{R}$ such that

$$
\|f\|_{L^{p}([0,1])}:=\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{1 / p}
$$

is finite.

1. Show that $f \mapsto\|f\|_{L^{p}([0,1])}$ is a norm.
2. Show that $L^{p}([0,1])$ is complete.
3. Show that continuous functions are dense in $L^{p}([0,1])$.

2 (20 pts) Define the Hardy-Littlewood maximal function (with respect to the Lebesgue measure) of a measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is integrable on compact subsets by

$$
\mathcal{M}(f)(x):=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(y)| d x
$$

Prove the weak-type estimate

$$
\left|\left\{x \in \mathbb{R}^{n}: \mathcal{M}(f)(x)>t\right\}\right| \leq \frac{C}{t} \int_{\mathbb{R}^{n}}|f| d x .
$$

3 (20 pts). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a measurable function such that $|f|^{p}$ has finite integral. Prove that

$$
\int_{\mathbb{R}^{n}}|f(x)|^{p} d x=p \int_{0}^{\infty} t^{p-1}\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>t\right\}\right| d t
$$

4 (20 pts). Show that if $f_{k}: \mathbb{R}^{n} \rightarrow[0, \infty]$ is a sequence of measurable functions such that

$$
f(x)=\lim _{n \rightarrow \infty} f_{k}(x)
$$

exists for every $x \in \mathbb{R}^{n}$, then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f d x \leq \liminf _{k \rightarrow \infty} \int_{\mathbb{R}^{n}} f_{k} d x \tag{1}
\end{equation*}
$$

(If you utilize Egorov's theorem, monotone convergence theorem, dominated convergence theorem, etc. in your proof you should prove them first.)

5 (20 pts) For $1 \leq p<+\infty$, let l^{p} denote the space of sequences $a=\left\{a_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
\|a\|_{l^{p}}:=\left(\sum_{n=1}^{\infty}\left|a_{n}\right|^{p}\right)^{1 / p}
$$

is finite. For a fixed $1 \leq p<+\infty$, let L be a linear functional on l^{p}, i.e., suppose L satisfies

$$
L(\alpha a+\beta b)=L(\alpha a)+L(\beta b)
$$

for all $\alpha, \beta \in \mathbb{R}, a=\left\{a_{n}\right\}_{n \in \mathbb{N}}, b=\left\{b_{n}\right\}_{n \in \mathbb{N}} \in l^{p}$ and there exists a constant $C=C(L)>0$ such that

$$
|L(a)| \leq C\|a\|_{l^{p}}
$$

1. Show that if $1<p<+\infty$ we may identify $L=b$ for some $b=\left\{b_{n}\right\}_{n \in \mathbb{N}} \in l^{p /(p-1)}$, i.e. show there exists $b=\left\{b_{n}\right\}_{n \in \mathbb{N}} \in l^{p /(p-1)}$ such that

$$
\begin{equation*}
L(a)=\sum_{n=1}^{\infty} a_{n} b_{n} \tag{2}
\end{equation*}
$$

for every $a=\left\{a_{n}\right\}_{n \in \mathbb{N}} \in l^{p}$.
2. Show that when $p=1$, there exists $b=\left\{b_{n}\right\}_{n \in \mathbb{N}}$ such that

$$
\|b\|_{l \infty}:=\max _{n \in \mathbb{N}}\left|b_{n}\right|
$$

is finite for which the formula (2) holds for every $a=\left\{a_{n}\right\}_{n \in \mathbb{N}} \in l^{1}$.

