100 學年度下學期數學系博士班資格考試 (實變分析)

本試題卷共 2 頁,計 10 題計算證明題,每題 10 分,合計 100 分。

1. Prove the *Carathéodory theorem*: A set *E* is measurable if and only if for every set *A*,

$$
|A|_e = |A \cap E|_e + |A \setminus E|_e.
$$

(Note: $|A|_e$ denotes the outer measure of *A*.)

- 2. Prove that the set of points at which a sequence of measuable real-valued functions converges (to a finite limit) is measurable.
- 3. Let *f* be a function which is upper semi-continuous and finite on a compact set *E*. Show that if *f* is bounded above on *E*. Show also that *f* assumes its maximum on *E*, that is, that there exists $x_0 \in E$ such that $f(x_0) \ge f(x)$ for all $x \in E$.
- 4. Let $f \in L(0,1)$. Show that $x^k f(x) \in L(0,1)$ for $k = 1,2,...$, and $\int_0^1 x^k f(x) dx \to 0$ as $k \rightarrow \infty$.
- 5. Let *E* be a measurable subset of \mathbb{R}^2 such that for almost every $x \in \mathbb{R}^1$, $\{y \mid (x, y) \in E\}$ has \mathbb{R}^1 -measure zero. Show that *E* has measure zero, and the for almost every $y \in \mathbb{R}^1$, *{x |* (*x, y*) *∈ E}* has measure zero.
- 6. (a) Write out the definition of the essential supremum *∥ f ∥*[∞] of a real-valued measurable function *f* on a measurable set *E*.
	- (b) Let *f* be a real-valued measurable function on [0, 1]. Prove that $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$.
- 7. Let *E* be a measurable set in \mathbb{R}^n , and $0 < p < q \le \infty$.
	- (a) Prove that $L^p(E) \cap L^{\infty}(E) \subset L^q(E)$.
	- (b) Prove that if $|E| < \infty$, then $L^q(E) \subset L^p(E)$.
- 8. Let $f, g \in L^2(\mathbb{R}^n)$. Prove that $f + g \in L^2(\mathbb{R}^n)$ and $||f + g||_2 \le ||f||_2 + ||g||_2$.

(背面尚有試題)

- 9. Let $\{\varphi_k\}$ be an orthonormal system in $L^2[0,1]$, and $\{c_k\}$ be the Fourier series of a function $f \in L^2[0,1]$ with respect to the system $\{\varphi_k\}.$
	- (a) Prove that the Bessel's inequality $\left(\sum_{n=1}^{\infty} x^n\right)$ ∑ *k*=1 $|c_k|^2$ $\sqrt{1/2}$ $≤$ *∥f ∥*₂ holds.

(b) Find a necessary and sufficient condition so that the Parseval's identity $\left(\sum_{n=1}^{\infty}$ ∑ *k*=1 $|c_k|^2$ $\sqrt{1/2}$ = *∥ f ∥*² holds, and prove your answer.

- 10. Let *C*[0*,*1] denote the set of all real-valued continuous functions on [0*,*1], and the linear operator $T : C[0,1] \to \mathbb{R}$ be defined by $T(f) = f(1)$ for all $f \in C[0,1]$.
	- (a) Prove that *T* is a continuous linear functional on $C[0,1]$.
	- (b) Prove that there exists an extension $T^*: L^{\infty}[0,1] \to \mathbb{R}^n$ of *T* such that T^* is a continuous linear functional on $L^{\infty}[0,1]$, but there is no $g \in L^{1}[0,1]$ satisfying

$$
T^*(f) = \int_{[0,1]} (f \times g) \, dx \quad \text{for all } f \in C[0,1].
$$

(試題結束)

101 學年度上學期數學系博士班資格考試 (實變分析)

本試題卷共 2 頁,計 10 題計算證明題,每題 10 分,合計 100 分。

1. Let *E* be a measurable subset of \mathbb{R} , with $|E| > 0$. Prove that there exists a positive real number ε such that $(-\varepsilon, \varepsilon) \subset E - E$, where

$$
E - E = \{x - y \mid x, y \in E\}.
$$

- 2. Prove or disprove:
	- (a) Any function $f : [a,b] \to \mathbb{R}$ of bounded variation is measurable.
	- (b) Any upper semicontinuous function $f : [a, b] \rightarrow \mathbb{R}$ is measurable.
- 3. Let *E* be a measurable set in \mathbb{R}^n of finite measure. Prove that $f : E \to \mathbb{R}$ is measurable if and only if for any $\varepsilon > 0$, there exists a closed subset *F* of *E* such that $|E \setminus F| < \varepsilon$, and *f* is continuous on *F*.
- 4. (a) State without proof the Egorov's theorem.
	- (b) Let $\langle f_k \rangle$ be a sequence of measurable functions on a measurable set *E* with $|E| < \infty$. If f_k converges to f a.e. in E , and sup *k |f_k* − *f* $|E(E)|$, prove that $\lim_{k \to \infty}$ $\int_E f_k = \int$ *E f* .
- 5. Let $f : [0,1] \times [0,1] \rightarrow \mathbb{R}$ satisfy for each $x \in [0,1]$, $f(x, y)$ is a Lebesgue integrable func- $\frac{\partial f(x, y)}{\partial}$ ∂x is a bounded function of (x, y) . Prove that $\frac{\partial f(x, y)}{\partial x}$ ∂*x* is a measurable function of *y* for each $x \in [0, 1]$, and

$$
\frac{\mathrm{d}}{\mathrm{d}x} \int_{[0,1]} f(x,y) \, \mathrm{d}y = \int_{[0,1]} \frac{\partial f(x,y)}{\partial x} \, \mathrm{d}y.
$$

- 6. (a) State the definition for a finite function *f* on a finite interval [*a,b*] to be *absolutely continuous*.
	- (b) Show that the function $f(x) = x^{\alpha}$ is absolutely continuous on every bounded subinterval of $[0, \infty)$ whenever $\alpha > 0$.
- 7. Let a_1, a_2, \ldots, a_N be non-negative real numbers, p_1, p_2, \ldots, p_N be positive real numbers with $\sum_{j=1}^{N} (1/p_j) = 1$. Show that

$$
\prod_{j=1}^N a_j \le \sum_{j=1}^N \frac{a_j}{p_j}.
$$

(背面尚有試題)

- 8. Let ℓ^{∞} denote the normed linear space of all bounded real sequences. Is ℓ^{∞} separable? Justify your answer.
- 9. Suppose that $f_k, f \in L^2$, and that $\int f_k g \to \int f g$ for all $g \in L^2$. If $||f_k||_2 \to ||f||_2$, show that $f_k \to f$ in L^2 norm.
- 10. Let Σ be a σ -algebra on a set $\mathcal{S}, \{E_k\}$ be any sequence of sets in Σ, and ϕ be a nonnegative additive set function on Σ. Prove that

 $\phi\left(\liminf_{k\to\infty}E_k\right)\leq \liminf_{k\to\infty}\phi(E_k).$

(試題結束)

(實 變 分 析)

※ 本試題卷共 8 題證明題

- **1.** (a) Prove that every Borel measurable subset in \mathbb{R}^n is Lebesgue measurable.
	- (b) Prove that there is a Lebesgue measurable subset in \mathbb{R}^n is not Borel measurable.

(10%)

- **2.** Prove or disprove (Please explain your answer):
	- (a) If $f: [a,b] \to \mathbb{R}$ is a function of bounded variation, then f is Lebesgue measurable.
	- (b) If *E* is a Lebesgue measurable subset of \mathbb{R} , with $|E| > 0$, then there exist *x*, $y \in E$ with $x \neq y$ such that $x - y$ is a rational number.
	- (c) If for each rational number *a*, the set $\{x \in \mathbb{R}^n \mid f(x) > a\}$ is Lebesgue measurable, then $f : \mathbb{R}^n \to \mathbb{R}$ is Lebesgue measurable.
	- (d) There exists a Riemann integrable function $f : [0,1] \rightarrow [0,1]$ such that *f* is continuous at each rational point and discontinuous at each irrational point of [0,1] .
	- (e) If f is Lebesgue integrable over E , then f is finite a.e. in E . (30%)
- **3.** Prove that if $f:[a,b] \to \mathbb{R}$ is a function of bounded variation, then f can be written as $f = g + h$, where *g* is absolutely continuous and *h* is singular, which are unique up to additive constants. (10%)
- **4.** Prove that if $f \in L^p(E)$ and $f \ge 0$, then $\int_E f^p = p \int_0^{\infty} \alpha^{p-1}$ $\int_E f^p = p \int_0^\infty \alpha^{p-1} \omega(\alpha) d\alpha$, where ω is the distribution function of *f*, defined by $\omega(\alpha) = \left| \{ x \in E \mid f(x) > \alpha \} \right|$. (10%)
- **5.** Prove that if $f \in L^p(\mathbb{R})$, where $1 \leq p < \infty$, then for every $\varepsilon > 0$ there is a continuous function *g* with compact support such that $||f - g||_p < \varepsilon$. (10%)
- **6.** Prove that if $f \in L(\mathbb{R}^n)$, then the definite integral $F(E) = \int_E f(x) dx$ is absolutely continuous with respect to Lebesgue measure. (10%)
- 7. For $f, g \in L(\mathbb{R}^n)$, we define the convolution of f and g by $(f * g)(x) = \int_{\mathbb{R}^n} f(x - y)g(y) dy$ for $x \in \mathbb{R}^n$. Prove that $f * g \in L(R^n)$, and $||f * g||_1 \le ||f||_1 \cdot ||g||_1$. (10%)
- **8.** Let $\{\varphi_k\}$ be an orthonormal system in $L^2[0,1]$, and $\{c_k\}$ be a sequence in $\ell^2(R)$. Prove that there exists $f \in L^2[0, 1]$ such that $\frac{1}{1}$ **c**_k $\varphi_k \chi$ *k* $c_{k}\varphi_{k}(x)$ ∞ $\sum_{k=1} c_k \varphi_k(x)$ is the Fourier series of *f* with respect to the orthonormal system $\{\varphi_k\}$. (10%)

(實變分析)

2015, 4, 30

※ 本試題卷共8 題計算證明題

- 1. (a) Prove that if every measurable set E in \mathbb{R}^n can be expressed as $E = F \cup Z$, where F is a closed set and $|Z|=0$.
	- (b) Let E_1 and E_2 be measurable subsets of \mathbb{R}^n . Prove that the product set $E_1 \times E_2$ is a measurable subset of $\mathbb{R}^n \times \mathbb{R}^n$, and $|E_1 \times E_2| = |E_1| \cdot |E_2|$.

2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be measurable. Prove that the function $g: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by $g(x, y) = f(x - y)$ is also measurable on $\mathbb{R}^n \times \mathbb{R}^n$. (10%) Hint: Show that there exists an invertible (2×2) matrix A such that $\{(x, y) | g(x, y) > a\} = A(\mathbb{R}^n \times \{z | f(z) > a\})$ for all $a \in \mathbb{R}$.

- 3. Prove or disprove (Please explain your answer):
	- (a) There exists a Riemann integrable function $f:[0,1] \rightarrow [0,1]$ such that f is continuous at each rational point and discontinuous at each irrational point of $[0,1]$.
	- (b) There exists an increasing continuous function f whose derivative f' is Lebesgue integrable on [0,1] such that $\int_{[0,1]} f' \neq f(1) - f(0)$. (10%)
- 4. (a) Prove carefully that for $0 < a < b < \infty$, $\int_{[0,\infty)} \int_{[a,b]} e^{-xy} \sin x \, dx \, dy = \int_{[a,b]} \frac{\sin x}{x} \, dx$. (b) Evaluate the Lebesgue integral $\int_{(0,\infty)} \frac{\sin x}{x} dx$. $(15%)$
- 5. Let $f:[0,1] \to \mathbb{R}$ be measurable. Prove that if $g(x, y) = f(x) f(y)$ is Lebesgue integrable over [0,1] \times [0,1], then f is Lebesgue integrable on [0,1].

 (10%)

 $(15%)$

- 6. Let $f_k : E \to \mathbb{R}$ be a sequence of measurable functions on E, where E is a measurable subset of \mathbb{R}^n , and $1 \leq p < \infty$.
	- (a) State the definition that $\langle f_k \rangle$ converges to f in measure.
	- (b) State the definition that $\langle f_k \rangle$ converges to f in L^p .
	- (c) Prove that if $\langle f_k \rangle$ converges to f in L^p , then it converges to f in measure.

 $(15%)$

- 7. (a) State without proof Holder inequality.
	- (b) Let *E* be a measurable subset of \mathbb{R}^n , with $|E| \le 1$, and $1 \le p < q < \infty$. Prove that for any measurable function $f: E \to \mathbb{R}$, $||f||_p \le ||f||_q$.

 (10%)

8. (a) Let $f \in L^2(0,1)$. Prove that $\lim_{k \to \infty} \int_0^{2\pi} f(x) \cos kx \, dx = \lim_{k \to \infty} \int_0^{2\pi} f(x) \sin kx \, dx = 0$. (b) Is (a) still true if $f \in L^1(0, 1)$? Why?

 $(15%)$

(實變分析)

2015, 10, 30

※ 本試題卷共六大題 (第一大題50分,其餘各題每題10分)

1. Prove or disprove: (Please explain your answer)

- (1) There is a Lebesgue measurable subset in \mathbb{R}^n , which is not Borel measurable.
- (2) Any function f of bounded variation on $[a,b]$ is Riemann integrable.
- (3) There is a subset E of R, with $|E| > 0$, satisfying for any $x, y \in E$ with $x \neq y$, $x - y$ is not a rational number.

(4) There is a sequence $\{E_k\}$ of disjoint sets such that $\left|\bigcup_{k=1}^{\infty} E_k\right| < \sum_{k=1}^{\infty} |E_k|_{e}$.

- (5) If $f : \mathbb{R}^n \to \mathbb{R}$ is Lebesgue measurable, then the function $g : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ defined by $g(x, y) = f(x - y)$ is also Lebesgue measurable on $\mathbb{R}^n \times \mathbb{R}^n$.
- (6) Every Riemann integrable function $f:[0,1] \to \mathbb{R}$ is Lebesgue integrable.
- (7) If f is Lebesgue integrable over E, then f is finite a.e. in E.
- (8) If $1 \le p < q < \infty$, then $L^q[0,1] \subset L^p[0,1]$.
- (9) There exists an increasing continuous function f whose derivative f' is Lebesgue integrable on [0,1] such that $\int_{[0,1]} f' \neq f(1) - f(0)$.
- (10) Any function f of bounded variation on [a, b] can be written as $f = g + h$, where g is absolutely continuous and h is singular.

 $(50%)$

2. Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be an affine function defined by $T(x) = Ax + u$, where A is an $n \times n$ matrix, and u is a fixed vector in \mathbb{R}^n . Prove that for any Lebesgue measurable set E of \mathbb{R}^n , $|T(E)| = |\det A||E|.$ (10%)

3. Let $f: E \to \mathbb{R}$ be a Lebesgue measurable function, where E is a Lebesgue measurable

subset of \mathbb{R}^n with $|E| < \infty$. Prove that there exists a sequence $\langle f_k \rangle$ of simple measurable functions on E such that $\langle f_k \rangle$ converges almost uniformly to f in the following sense: for all $\varepsilon > 0$, there exists a closed subset F of E with $|E \setminus F| < \varepsilon$, such that $\langle f_k \rangle$ converges uniformly to f on F . (Hint: You can apply Egorov Theorem) (10%)

4. Let $f : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ satisfy for each $x \in [0, 1]$, $f(x, y)$ is a Lebesgue integrable function of y, and $\frac{\partial f(x, y)}{\partial x}$ is a bounded function of (x, y) . Prove that $\frac{\partial f(x, y)}{\partial x}$ is

a Lebesgue measurable function of y for each $x \in [0,1]$, and

$$
\frac{d}{dx}\int_{[0,1]}f(x,y) \,dy = \int_{[0,1]} \frac{\partial f(x,y)}{\partial x} \,dy. \tag{10\%}
$$

5. Let f be nonnegative and Lebesgue measurable on a Lebesgue measurable subset E of \mathbb{R}^n . Prove that

$$
\int_E f = \sup \sum_j \left[\inf_{x \in E_j} f(x) \right] \left| E_j \right| ,
$$

where the supremum is taken over all decompositions $E = \bigcup_i E_i$ of E into the union of a finite number of disjoint Lebesgue measurable sets E_i . (10%)

6. Let $\{\varphi_k\}$ be an orthonormal system in $L^2[0, 1]$, and $\{c_k\}$ be a sequence in $\ell^2(\mathbb{R})$. Prove that there exists $f \in L^2[0,1]$ such that $\sum_{k=1}^{\infty} c_k \varphi_k(x)$ is the Fourier series of f with respect to the orthonormal system $\{\varphi_k\}$. (10%)

(Real Analysis Qualifying Exam) 2016.10.31

- 1. Let E, F be measurable sets in \mathbb{R}^n , B be a Borel set in $[0,\infty)$, and $f : E \to [0,\infty)$ be a measurable function. Prove that the following 4 sets are measurable: $E \cup F$, $E \times F$, $f^{-1}{B}$, and $R(f, E) = \{(x, y) | x \in E, 0 \le y \le f(x) \}$. (20%)
- 2. (a) Use Caratheodory theorem to show that if E is a subset of \mathbb{R}^n satisfying the condition $|G| = |G \cap E|_{e} + |G \cap E^{C}|$ for all open sets G in \mathbb{R}^{n} , then E is measurable.

(b) If the condition in (a) is changed to $|F| = |F \cap E|_{e} + |F \cap E^{c}|$ for all closed sets F in \mathbb{R}^n , is Emeasurable? Why? (10%)

- 3. Prove that if $f : \mathbb{R}^n \to \mathbb{R}$ is a measurable function, then the function $g : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, defined by $g(x, y) = f(2x - 3y)$, is also measurable on $\mathbb{R}^n \times \mathbb{R}^n$. (10%) (Hint: Find an invertible (2×2) matrix A such that $\{(x, y) | g(x, y) > a \} = A(\mathbb{R}^n \times \{ z | f(z) > a \})$ for every $a \in \mathbb{R}$.
- 4. Let $\langle f_k \rangle$ be a sequence of measurable functions on a measurable set E of \mathbb{R}^n .
	- (a) Use monotone convergence theorem to show that $\int_E \sum_{k=1}^{\infty} |f_k| = \sum_{k=1}^{\infty} \int_E |f_k|$. (b) Prove that if the series $\sum_{k=1}^{\infty} \int_{E} |f_k|$ converges, then $\sum_{k=1}^{\infty} f_k$ converges absolutely *a.e.* in E, and $\sum_{k=1}^{\infty} \int_{E} f_k = \int_{E} \sum_{k=1}^{\infty} f_k$. $(16%)$
- 5. (a) Prove that if $f \in L(E)$, then for all $\varepsilon > 0$, there is $\delta > 0$ such that $\int_{A} |f| < \varepsilon$ for all measurable subsets A of E with $|A| < \delta$.
	- (b) Use Egoroff theorem to show that if $\langle f_k \rangle$ is a sequence of measurable functions that converges to f a.e. in E, with $|E| < \infty$, and $\sup_k |f_k - f| \in L(E)$, then $\lim_{k \to \infty} \int_E f_k = \int_E f$.

(c) Use Tonelli theorem to show that if $f, g \in L(\mathbb{R}^n)$, then $\int_{\mathbb{R}^n} |f(x - y) \times g(y)| dy < \infty$ for a.e. $x \in \mathbb{R}^n$. $(24%)$

- 6. Let $\{\varphi_k\}$ be an orthonormal system in $L^2[0,1]$. Prove that $\{\varphi_k\}$ is complete if, and only if, Parseval's formula $||f|| = \left(\sum_{k=1}^{\infty} |c_k|^2\right)^{\frac{1}{2}}$ holds for every $f \in L^2[0,1]$, where the numbers c_k are the Fourier coefficients of f with respect to the system $\{\varphi_k\}$. (10%)
- 7. Use Radon-Nikodym theorem to show that for any continuous linear functional T on $L^2[0,1]$, there exists a unique function $g \in L^2[0,1]$ such that $T(f) = \int_{[0,1]} f \times g$ for every $f \in L^2[0,1]$. (10%)

106學年度數學系博士班資格考試 (Real Analysis Qualifying Exam) 2017.10.31 ***Each problem is worth 10 points.***

1. Determine which function is Riemann (improper) integrable on E ? Lebeague integrable on E ? Explain your answer.

$$
f(x) = \begin{cases} 1, & \text{if } x \in [0,1] \cap \mathbb{Q} \\ x, & \text{if } x \in [0,1] \cap \mathbb{Q}^C \end{cases} \text{ on } E = [0,1] \text{ and } g(x) = \frac{\sin x}{x} \text{ on } E = [1,\infty).
$$

- 2. Prove that (Caratheodory Theorem) a subset E in \mathbb{R}^n is measurable if and only if for every set A in \mathbb{R}^n , $|A|_e = |A \cap E|_e + |A \setminus E|_e$.
- 3. Construct a sequence of disjoint sets E_1, E_2, E_3, \cdots in $\mathbb R$ such that $\left| \bigcup_{k=1}^{\infty} E_k \right| \neq \sum_{k=1}^{\infty} |E_k| \cdot$
- Prove that there exists a Lebesgue measurable set in $\mathbb R$, which is not a Borel set. $4.$
- 5. Prove that if $f : \mathbb{R}^n \to \mathbb{R}$ is measurable, then the function $g : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, defined by $g(x, y) = f(x + 2y)$, is also measurable on $\mathbb{R}^n \times \mathbb{R}^n$.
- 6. Let $\langle f_k \rangle$ be a sequence of measurable functions on a measurable set E of \mathbb{R}^n . Prove that if the series $\sum_{k=1}^{\infty} \int_{E} |f_k|$ converges, then $\sum_{k=1}^{\infty} f_k$ converges absolutely *a.e.* in E, and $\sum_{k=1}^{\infty} \int_{E} f_{k} = \int_{E} \sum_{k=1}^{\infty} f_{k}$.
- 7. Suppose that $f \in L(\mathbb{R})$ and $\iint_{\mathbb{R}^2} f(3x)f(x+2y) dx dy = 1$, calculate $\int_{\mathbb{R}^2} f(x) dx$.
- 8. (a) Prove that if $f:[a,b]\to\mathbb{R}$ is bounded, Lebesgue integrable, and $F(x) = \int_{[a,x]} f$, then F is absolutely continuous, and $F' = f$ a.e. in [a, b]. (b) Is (a) still true, if f is unbounded? Why?

9. Let $f \in L^p(\mathbb{R}^n)$, $1 < p, q < \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$. Prove that $||f||_p = \sup_{||g||_p \le 1} ||\int_{\mathbb{R}^n} f(x) \times g(x) dx||$. 10. (a) Let $f \in L^2(0, 2\pi)$. Prove that $\lim_{k \to \infty} \int_0^{2\pi} f(x) \cos kx \, dx = \lim_{k \to \infty} \int_0^{2\pi} f(x) \sin kx \, dx = 0$.

(b) Is (a) still true, if
$$
f \in L^1(0, 2\pi)
$$
? Why?

108 學年度數學系博士班資格考試(實變分析)

Real Analysis Qualifying Exam

2019.10.31

- 1. It is known from Caratheodory theorem that a subset E of \mathbb{R}^n is measurable if and only if $|A| = |A \cap E|_{e} + |A \setminus E|_{e}$ for all sets A in \mathbb{R}^{n} . Prove or disprove : (a) If $|G| = |G \cap E|_e + |G \setminus E|_e$ for all open sets G in \mathbb{R}^n , then E is measurable. (b) If $|F| = |F \cap E|_e + |F \setminus E|_e$ for all closed sets F in \mathbb{R}^n , then E is measurable.
	- $(12%)$

 $(12%)$

 $(12%)$

- 2. (a) Let $f : [0, 1] \rightarrow \mathbb{R}$ be a continuous function and B denote the Borel σ -algebra in \mathbb{R} . Prove that the family $\Gamma = \{ E \subset \mathbb{R} \mid f^{-1}(E) \text{ is measurable} \}$ is a σ -algebra containing B.
	- (b) Prove that there exists a measurable subset of $[0,1]$, but not a Borel set.

3. (a) Prove that every linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ maps measurable subsets of \mathbb{R}^n into measurable sets.

- (b) Let $f : \mathbb{R}^n \to \mathbb{R}$ be a measurable function, and $a, b \in \mathbb{R}$. Prove that the function $g: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$, defined by $g(x, y) = f(ax + by)$, is also measurable on $\mathbb{R}^n \times \mathbb{R}^n$.
- 4. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is a measurable function satisfying $f(x + y) = f(x) + f(y)$ for all $x, y \in \mathbb{R}$, then f must be linear. (10%)
- 5. (a) Prove that if $f \in L(E)$, then f is finite a.e. in E.

(b) Suppose that $\langle f_k \rangle$ is a sequence of measurable functions on a measurable subset E of \mathbb{R}^n , and $\sum_{k=1}^{\infty} \int_E |f_k|$ converges. Prove that $\sum_{k=1}^{\infty} f_k$ converges absolutely *a.e.* in E, and $\sum_{k=1}^{\infty} \int_{E} f_{k} = \int_{E} \sum_{k=1}^{\infty} f_{k}$. $(12%)$

6. Let $\langle f_k \rangle$ be a sequence of measurable functions on a measurable subset E of \mathbb{R}^n , with $|E| < \infty$, and $|f_k(x)| \le M_x < \infty$ for all k and for each $x \in E$. Prove that for all $\varepsilon > 0$, there is a closed subset F of E and a positive number M such that $|E \setminus F| < \varepsilon$ and $|f_k(x)| \le M$ for all k and for all $x \in F$. (Hint: You can apply Lusin theorem) (10%)

- 7. Use Tonelli theorem to show that if $f : E \to [0, \infty)$ is a measurable function on a measurable subset E of \mathbb{R}^n , and $\omega(\alpha) = \left| \left\{ x \in E \mid f(x) > \alpha \right\} \right|$, then $\int_E f = \int_0^\infty \omega(\alpha) d\alpha$. (**Hint**: $\int_E f = \iint_{R(f,E)} 1 dx dy$, where $R(f, E) = \{(x, y) | x \in E, 0 \le f(x) \le y\}$.) (10%)
- 8. Let $f:[0,1]\times[0,1]\to\mathbb{R}$ be a measurable function. Prove that if the iterated integral $\int_{[0,1]} \int_{[0,1]} |f(x,y)| dx dy$ exists and is finite, then $f \in L([0,1] \times [0,1])$, and $\iint_{[0,1]\times[0,1]} f = \int_{[0,1]} \int_{[0,1]} f(x,y) dx dy = \int_{[0,1]} \int_{[0,1]} f(x,y) dy dx.$ (10%)
- 9. Let $\{\varphi_k\}$ be any orthonormal basis for $L^2(E)$ over $\mathbb R$.
	- (a) Prove that $\{\varphi_k\}$ must be countable and complete.
	- (b) Prove that any function $f \in L^2(E)$ satisfies Parseval formula with respect to $\{\varphi_k\}$;

that is,
$$
||f||_2 = \left(\sum_{k=1}^{\infty} |c_k|^2\right)^{\frac{1}{2}}
$$
, where $\{c_k\}$ is the sequence of Fourier coefficients of f.

 $(12%)$

109學年度數學系博士班資格考試(實變分析)

Real Analysis Qualifying Exam

2021.4.28

1. Let $f(x) = \begin{cases} 0, & \text{if } x \in [0,1] \\ 1, & \text{if } x \in (1,2] \end{cases}$, $\alpha(x) = \begin{cases} 0, & \text{if } x \in [0,1) \\ 1, & \text{if } x \in [1,2] \end{cases}$, and $\beta(x) = \begin{cases} x, & \text{if } x \in [0,1) \\ x^2, & \text{if } x \in [1,2] \end{cases}$.

(a) Is f Riemann-Stieltjes integrable to α on [0,2]? Why?

(b) Is f Riemann-Stieltjes integrable to β on [0, 2]? Why? $(12%)$

- 2. (a) Let $f:[0,1]\times[0,1]\to\mathbb{R}$ be a measurable function and B be a Borel set in \mathbb{R} . Prove that $f^{-1}(B)$ is measurable in [0,1]×[0,1].
	- (b) Let f and g be measurable on [0,1]. Prove that the function $F:[0,1]\times[0,1]\to\mathbb{R}$, defined by $F(x, y) = f(x) \times g(y)$, is measurable on [0,1]×[0,1]. $(12%)$
- 3. Let $f: E \to \mathbb{R}$ be a measurable function on a measurable subset E of \mathbb{R}^n . Prove that for all $\varepsilon > 0$, there is a Borel set B in E, with $|E \setminus B| < \varepsilon$, and a sequence $\langle f_k \rangle$ of Borel measurable functions such that $\langle f_k(x) \rangle$ converges increasingly to $|f(x)|$ for all $x \in B$.

$$
(10\%)
$$

- 4. Let $\langle f_k \rangle$ be a sequence of measurable functions on a measurable subset E of \mathbb{R}^n , and $\sum_{k=1}^{\infty} \int_{E} |f_{k}|$ converges. Prove that $\sum_{k=1}^{\infty} |f_{k}|$ converges a.e. in E, and $\sum_{k=1}^{\infty} \int_{E} f_{k} = \int_{E} \sum_{k=1}^{\infty} f_{k}$. (10%)
- 5. Let $\langle f_k \rangle$ be a sequence of increasing functions on [a, b], and $\sum_{k=1}^{\infty} f_k(x)$ converge to $f(x)$ for each $x \in [a, b]$. Prove that $\sum_{k=1}^{\infty} f'_k(x)$ converges to $f'(x)$ for a.e. x in E.

 $\mathbf{1}$

 $(10%)$

- 6. Let $f : [0,1] \times [0,1] \rightarrow \mathbb{R}$ satisfy that for each $x \in [0,1]$, $f(x, y)$ is a Lebesgue integrable function of y, and $\frac{\partial f(x, y)}{\partial x}$ is a bounded function of (x, y) . Prove that $\frac{\partial f(x, y)}{\partial x}$ is a measurable function of y for each $x \in [0, 1]$, and $\frac{d}{dx}\int_{[0,1]}f(x, y) dy = \int_{[0,1]} \frac{\partial f(x, y)}{\partial x} dy.$ (10%)
- 7. Let E be a measurable subset of \mathbb{R}^n . Prove that $f : E \to \mathbb{R}$ is measurable if and only If the region $R(f, E)$ is measurable, where $R(f, E) = \{(x, y) | x \in E, 0 \le f(x) \le y\}$.
	- $(12%)$
- 8. (a) Let f be measurable on E, and $1 < p < q < \infty$, with $\frac{1}{p} + \frac{1}{q} = 1$. Prove that $\int_{E} |fg| \leq \left(\int_{E} |f|^{p} \right)^{\frac{1}{p}} \left(\int_{E} |f|^{q} \right)^{\frac{1}{q}}$

(b) Let f be measurable on E with $0 < |E| < \infty$, and $1 \le p < q < \infty$. Prove that

$$
\left(\frac{1}{|E|}\int_{E}|f|^{p}\right)^{\frac{1}{p}} \leq \left(\frac{1}{|E|}\int_{E}|f|^{q}\right)^{\frac{1}{q}}.
$$
\n(12%)

- 9. Define the operator $T: C[0,1] \to \mathbb{R}$ by $T(f) = f(1)$ for all $f \in C[0,1]$, where $C[0,1]$ denotes the Banach space of all real-valued continuous functions on $[0, 1]$.
	- (a) Prove that T is a continuous linear functional on $C[0,1]$.
	- (b) Prove that there exists a continuous linear functional $T^*: L^{\infty}[0,1] \to \mathbb{R}$ such that $T^*(f) = T(f)$ for all $f \in C[0,1]$, but there exists no function $g \in L^1[0,1]$ satisfying $T^*(f) = \int_{[0,1]} (f \times g) dx$ for all $f \in C[0,1]$. $(12%)$

Real Analysis Qualifying Exam Fall 112.

English Name:

Grading. The exam is out of 100pts. As written below, Problems 1, 2, 6, 7, 8 are worth 12 pts; Problems 4, 5 are worth 13 pts; Problem 3 is worth 14 pts.

Preliminaries. Throughout this exam, we suppose X is a set, β is a σ -algebra of subsets of X, elements of which we call measurable, and $\mu : \mathcal{B} \to [0, \infty]$ is a measure:

i

$$
\mu(\emptyset) = 0;
$$

ii

$$
\mu\left(\bigcup_{n=0}^{\infty} E_n\right) = \sum_{n=0}^{\infty} \mu(E_n) \quad E_n \in \mathcal{B} \text{ for all } n, E_n \cap E_m = \emptyset \text{ if } m \neq n.
$$

Further suppose $X = \bigcup_n X_n$ with $\mu(X_n) < +\infty$. We say that a function $f: X \to$ $[-\infty,\infty]$ is measurable if $\{x : f(x) > \alpha\} \in \mathcal{B}$ for each $\alpha \in \mathbb{R}$. For a measurable function $f: X \to [0, \infty]$ define

$$
\int_X f \, d\mu := \sup_{g \le f} \int_X g \, d\mu
$$

where the supremum is taken over all non-negative simple functions.

1 (12 pts). Suppose that $f: X \to \mathbb{R}$ is a measurable function such that

$$
\int_X |f| \, d\mu < +\infty.
$$

Show that for every $\epsilon > 0$, there exists $\delta > 0$ such that if A is a measurable set with $\mu(A) < \delta$ then

$$
\int_{A} |f| \, d\mu < \epsilon. \tag{1}
$$

2 (12 pts). Show that if $\{A_n\}$ is a sequence of measurable sets with $A_{n+1} \subset A_n$ and $\mu(A_1) < +\infty$, then

$$
\lim_{n \to \infty} \mu(A_n) = \mu(\cap_{n=0}^{\infty} A_n). \tag{2}
$$

3 (14 pts). Show that if $f_n : X \to [0, \infty]$ is a sequence of measurable functions such that

$$
f(x) = \lim_{n \to \infty} f_n(x)
$$

exists for every $x \in X$, then

$$
\int_{X} f \, d\mu \le \liminf_{n \to \infty} \int_{X} f_n \, d\mu. \tag{3}
$$

(If you utilize Egorov's theorem, monotone convergence theorem, dominated convergence theorem, etc. in your proof you should prove them first.)

4 (13 pts). In this problem, let $X = \mathbb{R}^n$ and suppose μ is a Radon measure, i.e. finite on compact sets and for each measurable set satisfies

$$
\mu(E) = \sup_{K \subset E} \mu(K) = \inf_{U \supset E} \mu(U)
$$

where K are assumed to be compact and U open. Show that if $f : \mathbb{R}^n \to \mathbb{R}$ is integrable then there exists a sequence of continuous functions φ_n such that

$$
\lim_{n \to \infty} \int_{\mathbb{R}^n} |\varphi_n - f| \, dx = 0. \tag{4}
$$

5 (13 pts). In this problem, let $X = \mathbb{R}^n$ and suppose μ is a Radon measure, i.e. finite on compact sets and for each measurable set satisfies

$$
\mu(E) = \sup_{K \subset E} \mu(K) = \inf_{U \supset E} \mu(U)
$$

where K are assumed to be compact and U open. Define the Hardy-Littlewood maximal function of a measurable function $f : \mathbb{R}^n \to \mathbb{R}$ which is integrable on compact subsets by

$$
\mathcal{M}(f)(x) := \sup_{r>0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} |f(y)| \, d\mu.
$$

Suppose for the given μ that one has shown the weak-type estimate

$$
\mu(\lbrace x \in \mathbb{R}^n : \mathcal{M}(f)(x) > t \rbrace) \leq \frac{C}{t} \int_{\mathbb{R}^n} |f| \, d\mu.
$$

Use this estimate and the properties of μ to show that

$$
\lim_{r \to 0} \frac{1}{\mu(B(x,r))} \int_{B(x,r)} f(y) \, d\mu = f(x) \tag{5}
$$

for μ almost every $x \in \mathbb{R}^n$. (You may assume that the conclusion of Problem 4 is valid.)

6 (12 pts). In this problem, let $X = [0,1], \mathcal{B} = \mathcal{M}$ be the σ -algebra of Lebesgue measurable subsets of [0, 1] and μ be the Lebesgue measure. Suppose that $f_n, f \in L^2([0,1])$,

$$
\lim_{n \to \infty} \int_{[0,1]} f_n g \, dx = \int_{[0,1]} f g \, dx
$$

for every $g \in L^2([0,1])$ and that

$$
\lim_{n \to \infty} \int_{[0,1]} |f_n|^2 \, dx = \int_{[0,1]} |f|^2 \, dx.
$$

Show that

$$
\lim_{n \to \infty} \int_{[0,1]} |f_n - f|^2 \, dx = 0. \tag{6}
$$

7 (12 pts). In this problem, let $X = [0, 1], \mathcal{B} = \mathcal{M}$ be the σ -algebra of Lebesgue measurable subsets of [0, 1] and μ be the Lebesgue measure. Suppose that $f_n, f \in L^2([0,1])$ and

$$
\lim_{n \to \infty} \int_{[0,1]} |f_n - f|^2 \, dx = 0.
$$

Show that there exists a subsequence $\{f_{n_k}\}\$ such that

$$
f(x) = \lim_{k \to \infty} f_{n_k}(x) \tag{7}
$$

for Lebesgue almost every $x \in [0, 1]$.

8 (12 pts). Let ν be another measure on the measurable space (X,\mathcal{B}) for which $X =$ $\cup_n X'_n$ with $\nu(X'_n) < +\infty$. State the Radon-Nikodym theorem and the Lebesgue decomposition theorem for the measures μ, ν , introducing suitable hypothesis when necessary.

Real Analysis Qualifying Exam

Spring 113.

English Name:

Grading. The exam is out of 100pts. All problems are worth 20pts.

1 (20 pts) Suppose $1 \leq p < +\infty$ and let $L^p([0,1])$ denote the vector space of Lebesgue measurable functions $f : [0, 1] \to \mathbb{R}$ such that

$$
||f||_{L^p([0,1])} := \left(\int_0^1 |f(x)|^p dx\right)^{1/p}
$$

is finite.

- 1. Show that $f \mapsto ||f||_{L^p([0,1])}$ is a norm.
- 2. Show that $L^p([0,1])$ is complete.
- 3. Show that continuous functions are dense in $L^p([0,1])$.

2 (20 pts) Define the Hardy-Littlewood maximal function (with respect to the Lebesgue measure) of a measurable function $f : \mathbb{R}^n \to \mathbb{R}$ which is integrable on compact subsets by

$$
\mathcal{M}(f)(x) := \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(y)| \, dx
$$

Prove the weak-type estimate

$$
|\{x \in \mathbb{R}^n : \mathcal{M}(f)(x) > t\}| \leq \frac{C}{t} \int_{\mathbb{R}^n} |f| \, dx.
$$

3 (20 pts). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a measurable function such that $|f|^p$ has finite integral. Prove that

$$
\int_{\mathbb{R}^n} |f(x)|^p dx = p \int_0^\infty t^{p-1} |\{x \in \mathbb{R}^n : |f(x)| > t\}| dt.
$$

4 (20 pts). Show that if $f_k : \mathbb{R}^n \to [0, \infty]$ is a sequence of measurable functions such that

$$
f(x) = \lim_{n \to \infty} f_k(x)
$$

exists for every $x \in \mathbb{R}^n$, then

$$
\int_{\mathbb{R}^n} f \, dx \le \liminf_{k \to \infty} \int_{\mathbb{R}^n} f_k \, dx. \tag{1}
$$

(If you utilize Egorov's theorem, monotone convergence theorem, dominated convergence theorem, etc. in your proof you should prove them first.)

5 (20 pts) For $1 \le p < +\infty$, let l^p denote the space of sequences $a = \{a_n\}_{n\in\mathbb{N}}$ such that

$$
||a||_{l^p} := \left(\sum_{n=1}^{\infty} |a_n|^p\right)^{1/p}
$$

is finite. For a fixed $1 \leq p < +\infty$, let L be a linear functional on l^p , i.e., suppose L satisfies

$$
L(\alpha a + \beta b) = \alpha L(a) + \beta L(b)
$$

for all $\alpha, \beta \in \mathbb{R}$, $a = \{a_n\}_{n \in \mathbb{N}}$, $b = \{b_n\}_{n \in \mathbb{N}} \in l^p$ and there exists a constant $C = C(L) > 0$ such that

$$
|L(a)| \leq C ||a||_{l^p}.
$$

1. Show that if $1 < p < +\infty$ we may identify $L = b$ for some $b = \{b_n\}_{n \in \mathbb{N}} \in l^{p/(p-1)}$, i.e. show there exists $b = \{b_n\}_{n \in \mathbb{N}} \in l^{p/(p-1)}$ such that

$$
L(a) = \sum_{n=1}^{\infty} a_n b_n \tag{2}
$$

for every $a = \{a_n\}_{n \in \mathbb{N}} \in l^p$.

2. Show that when $p = 1$, there exists $b = \{b_n\}_{n \in \mathbb{N}}$ such that

$$
\|b\|_{l^\infty}:=\max_{n\in\mathbb{N}}|b_n|
$$

is finite for which the formula (2) holds for every $a = \{a_n\}_{n \in \mathbb{N}} \in l^1$.